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Linear Regression

The linear regression model1 is a discriminative model with
f (x) = E [y |x ]2 as the target function and H = {h (x)} consisting of
linear functions3:

h (x) = x ′β

, where x = (1, x1, . . . , xp)′ and β = (β0, β1, . . . , βp)′.

The goal is to find g ∈ H that best approximates f .

1Note on terminology: linear regression can refer broadly to the use of any linear
models for regression purposes. Historically, however, it refers more narrowly to least
squares linear regression, i.e., linear regression by minimizing in-sample MSE.

2The conditional expectation function (CEF), E [y |x ], is also known as the
regression function.

3Since each h (x) is associated with a unique β, h (x) is said to be parametrized by
β. In this case, choosing a hypothesis h is equivalent to choosing a parameter β.
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Linear Regression

Error measures:

Eout (h) = E
[
(y − h (x))2

]
(1)

Ein (h) = 1
N

N∑
i=1

(yi − h (xi ))2 (2)

The VC dimension of a linear model is p + 14. For N � p, the linear
model generalizes well from Ein to Eout .

4p is the dimension of the input space.
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Linear Regression

Let

β∗ = arg min
β

E
[(

y − x ′β
)2]

= E
[
xx ′
]−1︸ ︷︷ ︸

(p+1)×(p+1)

E [xy ]︸ ︷︷ ︸
(p+1)×1

(3)

β∗ is the population regression coefficient.

x ′β∗ is the best5 linear predictor of y given x in the underlying
population.

5in the sense of minimizing the L2 loss function.
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Linear Regression

Recall that the CEF f (x) = E [y |x ] is the best5 predictor of y given x in
the class of all functions of x .

The function x ′β∗ provides the best5 linear approximation to the CEF6:

β∗ = arg min
β

E
[(
E [y |x ]− x ′β

)2]

6Generally,

arg min
h

E
[
(y − h (x))2] = arg min

h
E
[
(y − E [y |x ] + E [y |x ]− h (x))2]

= arg min
h

E
[
(y − E [y |x ])2 + (E [y |x ]− h (x))2

+2 (y − E [y |x ]) (E [y |x ]− h (x))]
= arg min

h
E
[
(E [y |x ]− h (x))2]
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Linear Regression

Let e∗ ≡ y − x ′β∗. By construction,

E [xe∗]︸ ︷︷ ︸
(p+1)×1

= 0 (4)

In particular, if x contains a constant term, then (4) ⇒ E [e∗] = 0. In this
case e∗ and x are uncorrelated.
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Linear Regression

We can separate the constant term and write the linear model as

y = β0 + x̃ ′β̃ + e

, where x̃ = (x1, . . . , xp)′ and β̃ = (β1, . . . , βp)′.

Then (3) ⇒

β̃∗ = V (x̃)−1 Cov (x̃ , y) (5)

β∗0 = E [y ]− E [x̃ ]
′
β̃∗
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Linear Regression

When p = 1,
y = β0 + β1x + e

(5) ⇒

β∗1 = Cov (x , y)
V (x)

β∗0 = E [y ]− β∗1E [x ]
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The OLS Estimator

Given observed data D = {(x1, y1) , . . . , (xN , yN)} ∼i .i .d . p (x , y), we have,
for i = 1, . . . ,N,

yi = β0 + β1xi1 + · · ·+ βpxip + ei (6)

, which can be written as
Y = Xβ + e (7)

, where Y = [y1, . . . , yN ]′, e = [e1, . . . , eN ]′, and

X =

 1 x11 · · · x1p
...

... . . . ...
1 xN1 · · · xNp

 =

 x ′1
...

x ′N


, where xi = [1, xi1, . . . , xip]′.
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The OLS Estimator

Minimizing the in-sample error (2) ⇒

β̂ =
[ N∑

i=1
xix ′i

]−1 N∑
i=1

xiyi (8)

=
(
X ′X

)−1 X ′Y

β̂ is the least squares regression coefficient – the sample estimate of β∗.
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Geometric Interpretation

Consider two n−dimensional vectors: a = (a1, . . . , an) and
b = (b1, . . . , bn). The Euclidean distance between a and b is:

‖a − b‖ =

√√√√ n∑
i=1

(ai − bi )2 =
√

(a − b) · (a − b)

The cosine of the angle between a and b is:

cos θ = a · b
‖a‖ ‖b‖

, where ‖a‖ = ‖a − 0‖ is the length of a.

When a · b = 0, a and b are orthogonal, denoted by a ⊥ b.
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Geometric Interpretation

The linear space spanned by a, denoted by R (a), is the collection of
points βa = (βa1, . . . , βan) for any real number β.

The projection of b onto R (a) is the point b∗ in R (a) that is closest to
b in terms of Euclidean distance:

b∗ =
(

a · b
‖a‖2

)
a

(b − b∗) ⊥ a
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Geometric Interpretation

Euclidean Distance in two Dimensions
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Geometric Interpretation
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Geometric Interpretation

The least squares linear regression fit Ŷ is the projection of Y onto the
linear space spanned by {1,X1, . . . ,Xp}7.

7Xj = (x1j , . . . , xNj )′ for j = 1, . . . , p.
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Geometric Interpretation

Projection matrix H = X (X ′X )−1 X ′

HY = Ŷ

I H is also called the hat matrix8,9.

ê = Y − X β̂ = (I−H) Y ⊥ R (1,X1, . . . ,Xp).
I ê ⊥ Xj ∀j .
I ê ⊥ 1⇒

∑
i êi = 0.

8Since it “puts a hat” on Y .
9The hat matrix has many special properties such as: H2 = H, (I−H)2 = (I−H),

and trace (H) = 1 + p.
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Frisch-Waugh-Lovell Theorem

Frisch-Waugh-Lovell Theorem
Given linear model (6), the OLS solution is β̂ =

(
β̂1, . . . , β̂p

)
, where

β̂j =
∑N

i=1 ûij ε̂ij∑N
i=1 û2

ij
=
(
û′j ûj

)−1
û′j ε̂j (9)

, where ûj = (û1j , . . . , ûNj)′ is the estimated residual from a regression of
xj on x−j

a, and ε̂j = (ε̂1j , . . . , ε̂Nj)′ is the estimated residual from a
regression of y on x−j .

Proof

ax−j = (x1, . . . , xj−1, xj+1, . . . , xp).
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Frisch-Waugh-Lovell Theorem

The Frisch-Waugh-Lovell theorem says that to obtain β̂j , we can10

1 regress y on all predictors other than xj to obtain residual ε̂j

2 regress xj on all the other predictors to obtain residual ûj

3 regress ε̂j on ûj

β̂j is the slope coefficient on a scatter plot with ε̂j on the y -axis and
ûj on the x -axis.

The geometric interpretation is that (ε̂j , ûj) ⊥ x−j – they are the
residuals in (xj , y) after orthogonalizing away the influence of the
other predictors.

10In fact, step 1 is not necessary. It is easy to prove an alternative version of the
Frisch-Waugh-Lovell theorem:

β̂j =
∑N

i=1 ûijyi∑N
i=1 û2

ij

=
(
û′j ûj
)−1 û′j y
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Frisch-Waugh-Lovell Theorem

Generate some data:

x1 ∼ U (0, 1)
x2 = 0.5x1 + 0.5r , r ∼ U (0, 1)
y = 1− 2.5x1 + 5x2 + e, e ∼ N (0, 1)

n <- 500
e <- rnorm(n)
x1 <- runif(n)
x2 <- 0.5*x1 + 0.5*runif(n)
y <- 1 - 2.5*x1 + 5*x2 + e
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Frisch-Waugh-Lovell Theorem

require(AER)
reg <- lm(y ~ x1 + x2)
coeftest(reg)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.01013 0.11884 8.4997 2.233e-16 ***
## x1 -2.59166 0.22529 -11.5039 < 2.2e-16 ***
## x2 5.06250 0.31213 16.2193 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Frisch-Waugh-Lovell Theorem

# to obtain beta1, we first regress y and x1 on x2
u1 <- residuals(lm(x1~x2))
e1 <- residuals(lm(y~x2))
b1 <- cov(u1,e1)/var(u1)

# to obtain beta2, we first regress y and x2 on x1
u2 <- residuals(lm(x2~x1))
e2 <- residuals(lm(y~x1))
b2 <- cov(u2,e2)/var(u2)

b0 <- mean(y) - b1*mean(x1) - b2*mean(x2)
cbind(b0,b1,b2)

## b0 b1 b2
## [1,] 1.010133 -2.591657 5.062497
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Frisch-Waugh-Lovell Theorem

# Alternatively,
b1 <- cov(u1,y)/var(u1)
b2 <- cov(u2,y)/var(u2)
b0 <- mean(y) - b1*mean(x1) - b2*mean(x2)
cbind(b0,b1,b2)

## b0 b1 b2
## [1,] 1.010133 -2.591657 5.062497
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Frisch-Waugh-Lovell Theorem
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Numerical Solution

(8) is the analytical solution to the problem:

min
β

N∑
i=1

(
yi − x ′i β

)2 (10)

For many problems, however, such analytical solutions do not exist.
How do we solve (10) numerically?
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Gradient Descent

Gradient descent is a method that finds a minimum of a function by
figuring out in which direction the function’s slope is rising the most
steeply, and moving in the opposite direction.

If the function that we are trying to minimize is differentiable and
convex, then it has a unique global minimum11. In this case, gradient
descent starting from any point is guaranteed to find the minimum.

11See Appendix for a comparison of convex and non-convex functions.
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Gradient Descent

Let the function that we want to minimize be f (θ), so that we are looking
for

θ∗ = arg min
θ

f (θ)

Gradient descent is based on a simple observation: at any point θ, ∇f (θ)
is a vector pointing in the direction of the greatest increase in f . Hence, to
find θ∗, we need to move in the direction of −∇f (θ).

© Jiaming Mao



Gradient Descent

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Gradient Descent for Finding a Local Minimum

Gradient descent is based on a simple observation:
Given parameters w, the direction of largest instantaneous decrease is �rf(w).
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Gradient Descent
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Gradient Descent

Gradient Descent Convergence Rate Gradient Descent for Logistic Regression Practical Issues and Newton-Like Methods

Gradient Descent for Finding a Local Minimum

Gradient descent is based on a simple observation:
Given parameters w, the direction of largest instantaneous decrease is �rf(w).
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Gradient Descent

Gradient Descent Algorithm

Start with θ(0).
repeat

θ(t) := θ(t−1) − η · ∇f
(
θ(t−1)

)
until

∥∥∥∇f
(
θ(t)

)∥∥∥ ≤ tolerance

return θ(t)
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Gradient Descent

We can run gradient descent until the gradient is close to zero.
Alternatively, we can run the algorithm for a fixed number of steps.

η is the step size, also called the learning rate. If it’s too large, we
may easily overshoot the minimum of f . If it’s too small, it may take
too long to get to the minimum. It is common to start with a higher
learning rate and then slowly decrease it as we approach the minimum.
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Gradient Descent
The ‘Goldilocks’ Step Size

η too small η too large variable ηt – just right
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η = 0.1; 75 steps η = 2; 10 steps variable ηt; 10 steps

c© AM
L Creator: Malik Magdon-Ismail Logistic Regression and Gradient Descent: 20 /23 Fixed learning rate gradient descent −→

Small, large, and variable learning rate
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Gradient Descent for Linear Regression

For linear regression, the objective function we want to minimize is:

f (β) =
N∑

i=1

(
yi − x ′i β

)2
= (Y − Xβ)′ (Y − Xβ)

⇒
∇f (β) = 2 (Xβ − Y )′ X
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Gradient Descent for Linear Regression

######################
# Objective Function #
######################
mse <- function(X,y,beta){

N <- length(y)
Z <- y - X%*%beta
mse <- t(Z)%*%Z/N

}

#####################
# Gradient Function #
#####################
grad <- function(X,y,beta){

N <- length(y)
grad <- 2*t(X)%*%(X%*%beta-y)/N

}
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Gradient Descent for Linear Regression

#############################
# Gradient Descent Function #
#############################
# eta: learning rate
# niter: number of iterations
gradientDescent <- function(X,y,beta0,eta,niter){

beta <- beta0
mse_hist <- rep(0,niter) # stores history of mse
beta_hist <- list(niter) # stores history of beta
for (i in 1:niter){

beta_hist[[i]] <- beta
mse_hist[i] <- mse(X,y,beta)
beta <- beta - eta*grad(X,y,beta) # update beta

}
result <- list("beta"=beta,"mse_hist"=mse_hist,"beta_hist"=beta_hist)
return(result)

}
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Gradient Descent for Linear Regression

################
# Simulation 1 #
################
# generate some data
## note: "true mse" = var(e) = 1
n <- 500
e <- rnorm(n)
x <- runif(n)
y <- 2*x + e

# Gradient Descent
## initial guess: 0; learning rate: 2.5; iteration: 10
X <- cbind(x) # make x column vector
result <- gradientDescent(X,y,0,2.5,10)
result$beta

## [,1]
## x 1.977162
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Gradient Descent for Linear Regression
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Gradient Descent for Linear Regression
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Gradient Descent for Linear Regression

################
# Simulation 2 #
################
n <- 500
e <- rnorm(n)
x <- runif(n)
y <- -2 + 4*x + e

# Gradient Descent
## learning rate: 0.05; iteration: 1000
X <- cbind(rep(1,n),x) # X matrix
result <- gradientDescent(X,y,c(0,0),0.05,1000)
result$beta

## [,1]
## -2.005872
## x 3.989831
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Gradient Descent for Linear Regression
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Asymptotic Properties

β̂ is unbiased: E
(
β̂
)

= β∗.

But how much does β̂ vary around β∗?
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Asymptotic Properties

red: x ′β∗. blue: x ′β̂
Right: x ′β̂ based on 10 random set of observations.
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Asymptotic Properties
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Asymptotic Properties
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Asymptotic Properties

By the central limit theorem,
√

N
(
β̂ − β∗

)
−→d N

(
0,E

(
xx ′
)−1 E

[
xx ′ (e∗)2

]
E
(
xx ′
)−1)

V
(
β̂
) .= N−1E

(
xx ′
)−1 E

[
xx ′ (e∗)2

]
E
(
xx ′
)−1︸ ︷︷ ︸

(p+1)×(p+1)

is the asymptotic

variance of β̂ conditional on x .

V
(
β̂
)
quantifies the uncertainty of β̂ due to random sampling.
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Asymptotic Properties

V̂
(
β̂
)

=
[ N∑

i=1
xix ′i

]−1( N∑
i=1

xix ′i ê2
i

)[ N∑
i=1

xix ′i

]−1

(11)

=
(
X ′X

)−1 (X ′ΩX
) (

X ′X
)−1 →p V

(
β̂
)

, where Ω = diag
(
ê2

1 , . . . , ê2
N
)

=

 ê2
1 · · · 0
... . . . ...
0 · · · ê2

N

.
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Asymptotic Properties

Homoskedasticity: E
[

(e∗)2
∣∣∣ x] = σ2

Heteroskedasticity: E
[

(e∗)2
∣∣∣ x] = σ2 (x)

Under homoskedasticity,
√

N
(
β̂ − β∗

)
−→d N

(
0,E

(
xx ′
)−1

σ2
)

V̂
(
β̂
)

=
(
X ′X

)−1
σ̂2 (12)
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Asymptotic Properties

From (9), we can also derive the homoskedastic asymptotic variance of β̂j

– the (j + 1)-th diagonal element of V
(
β̂
)
– as:

For j = 1, . . . , p,

√
N
(
β̂j − β∗j

)
−→d N

(
0, σ2

V (uj)

)

V̂
(
β̂j
)

= σ̂2

û′j ûj
(13)
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Asymptotic Properties

t-statistic

tj =
β̂j − β∗j
ŝe
(
β̂j
) →d N (0, 1)

, where ŝe
(
β̂j
)

=
√
V̂
(
β̂j
)
.

95% confidence interval for β∗j :[
β̂j − 1.96× ŝe

(
β̂j
)
, β̂j + 1.96× ŝe

(
β̂j
)]

I The interval represents a set estimate of β∗j .
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Hypothesis Testing

H0 : β∗j = 0 vs. H1 : β∗j 6= 0

Under H0,

tj = β̂j

ŝe
(
β̂j
) →d N (0, 1) (14)

P-value: probability of observing any value more extreme than |tj | under
H0. (14) ⇒ in large sample,

p − value ≈ 2 (1− Φ (|tj |)) (15)

, where Φ is the CDF of N (0, 1).
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Hypothesis Testing

For significance level α, reject H0 if |tj | > cα = Φ−1 (1− α/2), or
equivalently, if p − value < α12.

cα is called the asymptotic critical value.

Common practice: α = 5% (c.05 ≈ 1.96), α = 10% (c.10 ≈ 1.64),
α = 1% (c.01 ≈ 2.58).

12It is worth emphasizing that (15) is only valid in large samples, since it is based on
the asymptotic distribution of tj . Any p−values calculated using (15) on small samples
should not be trusted. In general, hypothesis tests based on the asymptotic properties of
test statistics are only valid for large samples.

© Jiaming Mao



Hypothesis Testing

α is the size of the test – the probability of making a Type I error:
Pr ( reject H0|H0 is true).

The power or sensitivity of a test, is the probability of rejecting H0
when H1 is true. Thus (1− power), denoted by β, is the probability
of making a Type II error: Pr ( fail to reject H0|H1 is true).

I Power ↑ as α ↑, or sample size N ↑, or the true (population) parameter
value is further away from its hypothesized value under H0.
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Hypothesis Testing
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Hypothesis Testing
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Hypothesis Testing
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R2

R2 =
∑N

i=1 (ŷi − y)2∑N
i=1 (yi − y)2 = 1−

∑N
i=1 ê2

i∑N
i=1 (yi − y)2

measures the amount of variation in yi accounted for by the model:
1 = perfect, 0 = perfect misfit.

cannot go down when you add regressors.
I Intuition: adding more regressors always allow us to fit the training

data more accurately (i.e., reduce Ein, but not necessary Eout)13.

13Technically, β̂ is chosen to minimize
∑

i ê2. if you add a regressor, you can always
set the coefficient of that regressor equal to zero to get the same

∑
i ê2. Therefore R2

cannot go down.
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Robust Standard Errors

(11) is known as heteroskedasticity-consistent (HC) standard error,
robust standard error, or White standard error.

Let’s generate some data:

x = U (0, 100)
y = 5x + e, e ∼ N (0, exp (x))

n <- 1e3
x <- 100*runif(n)
y <- rnorm(n,mean=5*x,sd=exp(x))
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Robust Standard Errors

require(AER)
coeftest(lm(y~x)) # homoskedastic standard error

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0116e+41 9.0736e+40 1.1148 0.26519
## x -3.0822e+39 1.5634e+39 -1.9715 0.04895 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

coeftest(lm(y~x),vcov=vcovHC) # robust standard error

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0116e+41 8.6253e+40 1.1728 0.2412
## x -3.0822e+39 2.6314e+39 -1.1713 0.2417
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The Bootstrap

The bootstrap is a statistical tool that can be used to quantify the
uncertainty associated with a given estimator or statistical method.

I For example, it can provide an estimate of the standard error of a
coefficient.

The term is believed to derive from “The Surprising Adventures of
Baron Munchausen” by Rudolph Erich Raspe14:

The Baron had fallen to the bottom of a deep lake. Just when it
looked like all was lost, he thought to pick himself up by his own
bootstraps.

14We also have the Munchausen number – a number that is equal to the sum of each
digit raised to the power of itself. E.g., 3435 = 33 + 44 + 33 + 55.
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The Bootstrap

Baron Munchausen
pulls himself out of
a mire by his own
hair (illustration by
Oskar Herrfurth)
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The Bootstrap

The idea is simple: suppose we want to estimate the standard error of
β̂. If we can generate many independent samples from the underlying
population, then we can estimate our model on each sample, based
on which we can compute an estimate of V

(
β̂
)

15.

15For an illustration, see page 43 - 45.
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The Bootstrap

In practice, we do not have access to the underlying population and
do not know the true p (x , y), but we can treat the empirical
distribution as an estimate of the true distribution and draw new
samples out of the observed sample itself.

Each generated bootstrap sample contains the same number of
observations as the original observed sample16. To accomplish this,
we repeatedly draw observations from the observed sample with
replacement.

16This is because β̂ is estimated on a sample of size N. To quantify its uncertainty,
we need to generate many samples of the same size.
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The Bootstrap

Suppose we observe the following data set: x = {0, 0, 0, 1, 1}. Then the
empirical distribution of x is Pr (x = 0) = 0.6 and Pr (x = 1) = 0.4.

If we believe this is a good approximation of the underlying true
distribution of x , then we can generate new samples from this distribution.
In practice, this can be accomplished by drawing from {0, 0, 0, 1, 1} with
replacement.
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The Bootstrap
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Portfolio Choice

We wish to invest a fixed sum of money in two financial assets that yield
returns of X and Y . Suppose our goal is to minimize the total risk, or
variance, of our investment. Then the problem is to choose α such that

α = arg min
γ

V (γX + (1− γ) Y ) (16)

(16) ⇒

α = σ2
Y − σXY

σ2
X + σ2

Y − 2σXY
(17)
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Portfolio Choice

Given data on (X ,Y ), we can estimate σ̂2
X , σ̂

2
Y , σ̂XY and compute α̂.

To estimate the standard error of α̂, we generate R bootstrap samples
from the observed data and estimate α R times ⇒

α̂ = 1
R

R∑
r=1

α̂r

ŝe (α̂) =

√√√√ 1
R − 1

R∑
r=1

(α̂r − α̂)2
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Portfolio Choice

# Function to calculate alpha
alpha <- function(data,index){

X <- data$X[index]
Y <- data$Y[index]
return((var(Y)-cov(X,Y))/(var(X)+var(Y)-2*cov(X,Y)))

}

# 'Portfolio' is a simulated data set containing the returns of X and Y
require(ISLR) # contains 'Portfolio'
n <- nrow(Portfolio)
bootsample <- sample(n,n,replace=T) # generate one bootstrap sample
alpha(Portfolio,bootsample) # calculate alpha based on the bootstrap sample

## [1] 0.6618485
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Portfolio Choice

# Calculate alpha based on 1000 bootstrap samples
require(boot)
boot(Portfolio,alpha,R=1000)

##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = Portfolio, statistic = alpha, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 0.5758321 0.007540109 0.0895633
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Portfolio Choice
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MPG and Horsepower
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MPG and Horsepower

require(ISLR) # contains the data set 'Auto'
require(boot)
beta <- function(data,index){

coef(lm(mpg~horsepower,data=data,subset=index))
}
boot(Auto,beta,R=1000) # bootstrap std err

##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = Auto, statistic = beta, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 39.9358610 0.0378395594 0.877270914
## t2* -0.1578447 -0.0004406186 0.007475398
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MPG and Horsepower

require(AER)
coeftest(lm(mpg ~ horsepower, data=Auto)) # homoskedastic std err

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 39.9358610 0.7174987 55.660 < 2.2e-16 ***
## horsepower -0.1578447 0.0064455 -24.489 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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MPG and Horsepower

coeftest(lm(mpg ~ horsepower, data=Auto),vcov=vcovHC) # robust std err

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 39.9358610 0.8644903 46.196 < 2.2e-16 ***
## horsepower -0.1578447 0.0074943 -21.062 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Log-Linear Regression

When y changes on a multiplicative or percentage scale, it is often
appropriate to use log (y) as the dependent variable17:

y = Aeβx+e ⇒ log (y) = log (A) + βx + e

e.g.,
log (GDP) = α + g × t + e

, where t = years, α = log (base year GDP), and g = annual growth rate.

17Suppose y grows at a rate i . If i is continuously compounded, then
yt = y0 limn→∞

(
1 + i

n

)nt = y0e it ⇒ log (yt) = log (y0) + i × t. If i is not continuously
compounded, then yt = y0 (1 + i)t ⇒ log (yt) = log (y0) + t log (1 + i) ≈ log (y0) + i × t.
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Log-Linear Regression

18

18Note: in general, E [f (y)] 6= f (E [y ]). In particular, by the Jensen’s inequality,
E [log (y)] < log (E [y ]). Therefore, if E [ log (y)| x ] = α + βx , then
E [y |x ] > exp (α + βx).

If we are willing to assume

log (y) = α + βx + e, e ∼ N
(
0, σ2)

, then we have: E [y |x ] = exp
(
α + βx + 1

2σ
2) = exp

(
E [ log (y)| x ] + 1

2σ
2).
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Elasticity and Log-Log Regression

In a log-log model:

log (y) = β0 + β1 log (x) + e

β1 can often be interpreted as an elasticity measure:

β1 = ∂ log (y)
∂ log (x) = ∂y/ y

∂x/ x ≈
%∆y
%∆x

e.g.,
log (sales) = β0 + β1 log (price) + e
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Orange Juice

Three brands: Tropicana, Minute Maid, Dominick’s
Data from 83 stores on price, sales (units moved), and whether featured in
the store
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Orange Juice

log(sales) = α + β log (price) + e

require(AER)
oj <- read.csv('oj.csv')
reg1 <- lm(logmove ~ log(price), data=oj)
coeftest(reg1)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.4234 0.0154 679.0 <2e-16 ***
## log(price) -1.6013 0.0184 -87.2 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Orange Juice

log(sales) = αb + βb log (price) + e, where b denotes brand

reg2 <- lm(logmove ~ log(price)*brand, data=oj)
coeftest(reg2)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.9547 0.0207 529.14 <2e-16 ***
## log(price) -3.3775 0.0362 -93.32 <2e-16 ***
## brandminute.maid 0.8883 0.0416 21.38 <2e-16 ***
## brandtropicana 0.9624 0.0464 20.72 <2e-16 ***
## log(price):brandminute.maid 0.0568 0.0573 0.99 0.32
## log(price):brandtropicana 0.6658 0.0535 12.44 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Orange Juice
log(sales) = (α0b + feature× a1b) + (β0b + feature× β1b)× log (price) + e
reg3 <- lm(logmove ~ log(price)*brand*feat, data=oj)
coeftest(reg3)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.4066 0.0234 445.67 < 2e-16 ***
## log(price) -2.7742 0.0388 -71.45 < 2e-16 ***
## brandminute.maid 0.0472 0.0466 1.01 0.31
## brandtropicana 0.7079 0.0508 13.94 < 2e-16 ***
## feat 1.0944 0.0381 28.72 < 2e-16 ***
## log(price):brandminute.maid 0.7829 0.0614 12.75 < 2e-16 ***
## log(price):brandtropicana 0.7358 0.0568 12.95 < 2e-16 ***
## log(price):feat -0.4706 0.0741 -6.35 2.2e-10 ***
## brandminute.maid:feat 1.1729 0.0820 14.31 < 2e-16 ***
## brandtropicana:feat 0.7853 0.0987 7.95 1.9e-15 ***
## log(price):brandminute.maid:feat -1.1092 0.1222 -9.07 < 2e-16 ***
## log(price):brandtropicana:feat -0.9861 0.1241 -7.95 2.0e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Orange Juice

Elasticity19: −1.6

Brand-specific elasticities:

Dominick’s: −3.4, Minute Maid: −3.4, Tropicana: −2.7

How does featuring a product affect its elasticity?
Dominick’s Minute Maid Tropicana

not featured −2.8 −2.0 −2.0
featured −3.2 −3.6 −3.5

19What economic assumptions need to be satisfied in order for the coefficients to be
interpreted as price elasticities of demand?
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CAPM

The Capital Asset Pricing Model (CAPM) for asset A relates return RA,t
to the market return, RM,t :

RA,t = α + βRM,t + e

When asset A is a mutual fund, this CAPM regression can be used as a
performance benchmark for fund managers.

# 'mfunds.csv' contains data on the historical returns of
# 6 mutual funds as well as the market return
mfund <- read.csv('mfunds.csv')
mu <- apply(mfund,2,mean)
stdev <- apply(mfund,2,sd)
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CAPM
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CAPM

CAPM <- lm(as.matrix(mfund[,1:6]) ~ mfund$valmrkt)
CAPM

##
## Call:
## lm(formula = as.matrix(mfund[, 1:6]) ~ mfund$valmrkt)
##
## Coefficients:
## drefus fidel keystne Putnminc scudinc
## (Intercept) 0.0003462 -0.0029655 -0.0037704 0.0028271 0.0002818
## mfund$valmrkt 0.9424286 1.1246549 1.5137186 0.3948280 0.6092026
## windsor
## (Intercept) 0.0036469
## mfund$valmrkt 0.9357170
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CAPM
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CAPM
Look at windsor (which dominates the market):
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CAPM

Does Windsor have an “alpha” over the market?

H0 : α = 0 vs. H1 : α 6= 0

require(AER)
reg <- lm(mfund$windsor ~ mfund$valmrkt)
coeftest(reg)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0036469 0.0014094 2.5876 0.01046 *
## mfund$valmrkt 0.9357170 0.0291499 32.1002 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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CAPM
Now look at beta:
H0 : β = 1, Windsor is just the market (+ alpha).
H1 : β 6= 1, Windsor softens or exaggerates market moves.
linearHypothesis(reg, "mfund$valmrkt = 1")

## Linear hypothesis test
##
## Hypothesis:
## mfund$valmrkt = 1
##
## Model 1: restricted model
## Model 2: mfund$windsor ~ mfund$valmrkt
##
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 179 0.064082
## 2 178 0.062378 1 0.0017042 4.8632 0.02872 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Rregression Diagnostics: Is the CEF linear?
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Rregression Diagnostics: Is the CEF linear?

Anscombe’s quartet comprises four datasets that have similar statistical
properties ...

anscombe <- read.csv('anscombe.csv')
attach(anscombe)
c(x.m1=mean(x1),x.m2=mean(x2),x.m3=mean(x3),x.m4=mean(x4))

## x.m1 x.m2 x.m3 x.m4
## 9 9 9 9

c(y.m1=mean(y1),y.m2=mean(y2),y.m3=mean(y3),y.m4=mean(y4))

## y.m1 y.m2 y.m3 y.m4
## 7.500909 7.500909 7.500000 7.500909
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Rregression Diagnostics: Is the CEF linear?

c(x.sd1=sd(x1),x.sd2=sd(x2),x.sd3=sd(x3),x.sd3=sd(x4))

## x.sd1 x.sd2 x.sd3 x.sd3
## 3.316625 3.316625 3.316625 3.316625

c(y.sd1=sd(y1),y.sd2=sd(y2),y.sd4=sd(y3),y.sd4=sd(y4))

## y.sd1 y.sd2 y.sd4 y.sd4
## 2.031568 2.031657 2.030424 2.030579

c(cor1=cor(x1,y1),cor2=cor(x2,y2),cor3=cor(x3,y3),cor4=cor(x4,y4))

## cor1 cor2 cor3 cor4
## 0.8164205 0.8162365 0.8162867 0.8165214
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Rregression Diagnostics: Is the CEF linear?
...but vary considerably when graphed:

© Jiaming Mao



Rregression Diagnostics: Is the CEF linear?
Linear regression on each dataset:
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Rregression Diagnostics: Is the CEF linear?

The regression lines and R2 values are the same...

areg <- list(areg1=lm(y1~x1),areg2=lm(y2~x2),areg3=lm(y3~x3),areg4=lm(y4~x4))
attach(areg)
cbind(areg1$coef,areg2$coef,areg3$coef,areg4$coef)

## [,1] [,2] [,3] [,4]
## (Intercept) 3.0000909 3.000909 3.0024545 3.0017273
## x1 0.5000909 0.500000 0.4997273 0.4999091

s <- lapply(areg,summary)
c(s$areg1$r.sq,s$areg2$r.sq,s$areg3$r.sq,s$areg4$r.sq)

## [1] 0.6665425 0.6662420 0.6663240 0.6667073
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Rregression Diagnostics: Is the CEF linear?
...but residual plots show the differences:
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Rregression Diagnostics: Nonrandom Sampling
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Rregression Diagnostics: Heteroskedasticity
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Rregression Diagnostics: Collinearity
3.3 Other Considerations in the Regression Model 99
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FIGURE 3.14. Scatterplots of the observations from the Credit data set. Left:
A plot of age versus limit. These two variables are not collinear. Right: A plot
of rating versus limit. There is high collinearity.

that greatly exceeds (p+1)/n, then we may suspect that the corresponding
point has high leverage.

The right-hand panel of Figure 3.13 provides a plot of the studentized
residuals versus hi for the data in the left-hand panel of Figure 3.13. Ob-
servation 41 stands out as having a very high leverage statistic as well as a
high studentized residual. In other words, it is an outlier as well as a high
leverage observation. This is a particularly dangerous combination! This
plot also reveals the reason that observation 20 had relatively little effect
on the least squares fit in Figure 3.12: it has low leverage.

6. Collinearity

Collinearity refers to the situation in which two or more predictor variables
collinearity

are closely related to one another. The concept of collinearity is illustrated
in Figure 3.14 using the Credit data set. In the left-hand panel of Fig-
ure 3.14, the two predictors limit and age appear to have no obvious rela-
tionship. In contrast, in the right-hand panel of Figure 3.14, the predictors
limit and rating are very highly correlated with each other, and we say
that they are collinear. The presence of collinearity can pose problems in
the regression context, since it can be difficult to separate out the indi-
vidual effects of collinear variables on the response. In other words, since
limit and rating tend to increase or decrease together, it can be difficult to
determine how each one separately is associated with the response, balance.

Figure 3.15 illustrates some of the difficulties that can result from collinear-
ity. The left-hand panel of Figure 3.15 is a contour plot of the RSS (3.22)
associated with different possible coefficient estimates for the regression
of balance on limit and age. Each ellipse represents a set of coefficients
that correspond to the same RSS, with ellipses nearest to the center tak-
ing on the lowest values of RSS. The black dots and associated dashed
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that greatly exceeds (p+1)/n, then we may suspect that the corresponding
point has high leverage.

The right-hand panel of Figure 3.13 provides a plot of the studentized
residuals versus hi for the data in the left-hand panel of Figure 3.13. Ob-
servation 41 stands out as having a very high leverage statistic as well as a
high studentized residual. In other words, it is an outlier as well as a high
leverage observation. This is a particularly dangerous combination! This
plot also reveals the reason that observation 20 had relatively little effect
on the least squares fit in Figure 3.12: it has low leverage.

6. Collinearity

Collinearity refers to the situation in which two or more predictor variables
collinearity

are closely related to one another. The concept of collinearity is illustrated
in Figure 3.14 using the Credit data set. In the left-hand panel of Fig-
ure 3.14, the two predictors limit and age appear to have no obvious rela-
tionship. In contrast, in the right-hand panel of Figure 3.14, the predictors
limit and rating are very highly correlated with each other, and we say
that they are collinear. The presence of collinearity can pose problems in
the regression context, since it can be difficult to separate out the indi-
vidual effects of collinear variables on the response. In other words, since
limit and rating tend to increase or decrease together, it can be difficult to
determine how each one separately is associated with the response, balance.

Figure 3.15 illustrates some of the difficulties that can result from collinear-
ity. The left-hand panel of Figure 3.15 is a contour plot of the RSS (3.22)
associated with different possible coefficient estimates for the regression
of balance on limit and age. Each ellipse represents a set of coefficients
that correspond to the same RSS, with ellipses nearest to the center tak-
ing on the lowest values of RSS. The black dots and associated dashed

Left: two variables are not collinear; Right: there is high collinearity.
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Rregression Diagnostics: Collinearity100 3. Linear Regression
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FIGURE 3.15. Contour plots for the RSS values as a function of the parameters
β for various regressions involving the Credit data set. In each plot, the black
dots represent the coefficient values corresponding to the minimum RSS. Left:
A contour plot of RSS for the regression of balance onto age and limit. The
minimum value is well defined. Right: A contour plot of RSS for the regression
of balance onto rating and limit. Because of the collinearity, there are many
pairs (βLimit, βRating) with a similar value for RSS.

lines represent the coefficient estimates that result in the smallest possible
RSS—in other words, these are the least squares estimates. The axes for
limit and age have been scaled so that the plot includes possible coeffi-
cient estimates that are up to four standard errors on either side of the
least squares estimates. Thus the plot includes all plausible values for the
coefficients. For example, we see that the true limit coefficient is almost
certainly somewhere between 0.15 and 0.20.

In contrast, the right-hand panel of Figure 3.15 displays contour plots
of the RSS associated with possible coefficient estimates for the regression
of balance onto limit and rating, which we know to be highly collinear.
Now the contours run along a narrow valley; there is a broad range of
values for the coefficient estimates that result in equal values for RSS.
Hence a small change in the data could cause the pair of coefficient values
that yield the smallest RSS—that is, the least squares estimates—to move
anywhere along this valley. This results in a great deal of uncertainty in the
coefficient estimates. Notice that the scale for the limit coefficient now runs
from roughly −0.2 to 0.2; this is an eight-fold increase over the plausible
range of the limit coefficient in the regression with age. Interestingly, even
though the limit and rating coefficients now have much more individual
uncertainty, they will almost certainly lie somewhere in this contour valley.
For example, we would not expect the true value of the limit and rating

coefficients to be −0.1 and 1 respectively, even though such a value is
plausible for each coefficient individually.

100 3. Linear Regression
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lines represent the coefficient estimates that result in the smallest possible
RSS—in other words, these are the least squares estimates. The axes for
limit and age have been scaled so that the plot includes possible coeffi-
cient estimates that are up to four standard errors on either side of the
least squares estimates. Thus the plot includes all plausible values for the
coefficients. For example, we see that the true limit coefficient is almost
certainly somewhere between 0.15 and 0.20.

In contrast, the right-hand panel of Figure 3.15 displays contour plots
of the RSS associated with possible coefficient estimates for the regression
of balance onto limit and rating, which we know to be highly collinear.
Now the contours run along a narrow valley; there is a broad range of
values for the coefficient estimates that result in equal values for RSS.
Hence a small change in the data could cause the pair of coefficient values
that yield the smallest RSS—that is, the least squares estimates—to move
anywhere along this valley. This results in a great deal of uncertainty in the
coefficient estimates. Notice that the scale for the limit coefficient now runs
from roughly −0.2 to 0.2; this is an eight-fold increase over the plausible
range of the limit coefficient in the regression with age. Interestingly, even
though the limit and rating coefficients now have much more individual
uncertainty, they will almost certainly lie somewhere in this contour valley.
For example, we would not expect the true value of the limit and rating

coefficients to be −0.1 and 1 respectively, even though such a value is
plausible for each coefficient individually.

Contour plots for the RSS as a function of parameters β.
Left: regression on two variables that are not collinear; Right: regression on two
variables that are highly collinear. Because of the collinearity, there are many

pairs of β with a similar value for the RSS.
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Rregression Diagnostics: Collinearity

From (9), we can see that:

If X1, . . . ,Xp are orthogonal, then β̂j is equal to the simple linear
regression coefficient of y on Xj .

If X1, . . . ,Xp are correlated – in particular – if Xj is highly correlated
with the other predictors, then ûj will be close to 0. This makes β̂j
unstable, as both the denominator and the numerator are small.

From (13), we can see that:

If Xj is highly correlated with the other predictors, the variance of β̂j
is inflated, making it less likely to be significant.
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Rregression Diagnostics: Collinearity

A simple way to detect collinearity is to look at the correlation matrix
of the predictors.

However, it is possible for collinearity to exist between three or more
variables even if no pair of variables has a particularly high
correlation. This is called multicollinearity.

Variance inflation factor (VIF):

VIF
(
β̂j
)

= 1
1− R2

Xj |X−j

, where R2
Xj |X−j

is the R2 from a regression of Xj onto all of the other
predictors.

I VIF ≥ 1. Large VIF indicates a problematic amount of collinearity.
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Rregression Diagnostics: Collinearity

When faced with the problem of collinearity, a simple solution is to
drop one of the problematic variables.

Suppose two variables both contribute in explaining y , but are highly
correlated with each other.

I Both will be insignificant if both are included in the regression model.
I Dropping one will likely make the other significant.

This is why we can’t remove two (or more) supposedly insignificant
predictors at a time: significance depends on what other predictors
are in the model!
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Maximum Likeliood Estimation

While least squares regression learns a deterministic function f (x)
that directly maps each x into a prediction of y , an alternative
approach is to learn the conditional distribution p (y |x) and use the
estimated p (y |x) to form a prediction of y .

To do so, let H = {qθ (y |x) : θ ∈ Θ}, where the hypotheses qθ (y |x)
are conditional distributions parametrized by θ ∈ Θ.

We select a qθ (y |x) ∈ H, or equivalently, a θ ∈ Θ, by minimizing the
empirical KL divergence, or equivalently, by maximizing the (log)
likelihood function.
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Maximum Likeliood Estimation

The log likelihood function20:

logL (θ) =
N∑

i=1
log qθ (yi |xi )

The maximum likelihood estimator chooses

θ̂ = arg max
θ∈Θ

logL (θ)

20Also written as logL (θ|D) to emphasize its dependence on sample D.
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Normal Linear Model

The normal linear regression model is H = {qθ (y |x)}, where

qθ (y |x) = N
(
x ′β, σ2

)
(18)

, where θ = (β, σ).

This is equivalent to assuming21:

y = x ′β + e, e ∼ N
(
0, σ2

)
(19)

21Notice the strong assumptions imposed by (18) and (19). In addition to assuming a
linear regression function, we are now assuming that (1) at each x , the scatter of y
around the regression function is normally distributed (Gaussianity); (2) the variance of
this scatter is constant (homoskedasticity); and (3) there is no dependence between
this scatter and anything else (error independence).

© Jiaming Mao



Normal Linear Model

Given sample D and model (18),

logL =
N∑

i=1
log
{ 1√

2πσ
exp

(
− 1
2σ2

(
yi − x ′i β

)2)} (20)

= −N
2 log (2π)− N log σ − 1

2σ2

N∑
i=1

(
yi − x ′i β

)2
︸ ︷︷ ︸

RSS
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Normal Linear Model

Maximizing (20) with respect to β and σ ⇒

∂ logL
∂β

= 0⇒ β̂ =
[ N∑

i=1
xix ′i

]−1 N∑
i=1

xiyi =
(
X ′X

)−1 X ′Y

∂ logL
∂σ

= 0⇒ σ̂ =

√√√√ 1
N

N∑
i=1

(
yi − x ′i β̂

)2

Thus, maximum likelihood estimation of the normal linear model produces
the same estimate of β as least squares regression.
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Normal Linear Model

Let’s fit the normal linear model (18) on the data we generated on page 20 :

# Define the negative log likelihood function
nll <- function(theta){

beta0 <- theta[1]
beta1 <- theta[2]
beta2 <- theta[3]
sigma <- theta[4]
N <- length(y)
z <- (y - beta0 - beta1*x1 - beta2*x2)/sigma
logL <- -1*N*log(sigma) - 0.5*sum(z^2)
return(-logL)}

# Minimize the negative likelihood function
mlefit <- optim(c(0,0,0,1),nll) # initial value for theta: (0,0,0,1)
mlefit$par # parameter estimate

## [1] 1.010153 -2.591790 5.062709 1.004935
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Normal Linear Model

# Alternatively,
require(bbmle)
parnames(nll) <- c("beta0","beta1","beta2","sigma")
result <- mle2(nll,start=c(beta0=0,beta1=0,beta2=0,sigma=1))
coeftest(result)

##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## beta0 1.010134 0.118487 8.5253 < 2.2e-16 ***
## beta1 -2.591654 0.224609 -11.5385 < 2.2e-16 ***
## beta2 5.062493 0.311189 16.2682 < 2.2e-16 ***
## sigma 1.004913 0.031778 31.6227 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Normal Linear Model
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Moving Beyond Linearity

The CEF f (x) = E (y |x) is seldom linear. The least squares linear
regression model, however, doesn’t have to be linear in x either. We
can move beyond linearity in inputs x as long as we retain linearity in
parameters β22.

Polynomial regression is a standard way to extend linear regression to
settings in which the relationship between x and y is nonlinear.

22We have already seen examples of including nonlinear terms in x such as log (x) and
interaction effects (x1x2) in the regression model.
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Polynomial Regression

h (x) = β0 + β1x
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Polynomial Regression

h (x) = β0 + β1x + β2x2 + β3x3
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Wage Profile

Data: income survey for men in central Atlantic region of USA

require(AER)
require(ISLR) # contains the data set 'Wage'
fit <- lm(wage ~ poly(age,4,raw=T), data=Wage) # degree-4 polynomial
coeftest(fit)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.8415e+02 6.0040e+01 -3.0672 0.0021803 **
## poly(age, 4, raw = T)1 2.1246e+01 5.8867e+00 3.6090 0.0003124 ***
## poly(age, 4, raw = T)2 -5.6386e-01 2.0611e-01 -2.7357 0.0062606 **
## poly(age, 4, raw = T)3 6.8107e-03 3.0659e-03 2.2214 0.0263978 *
## poly(age, 4, raw = T)4 -3.2038e-05 1.6414e-05 -1.9519 0.0510386 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Wage Profile
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Piecewise Constant Regression

For the following analysis, consider modeling the relationship between
y and a single input variable x .

So far we have imposed a ☼global% structure on the relationship
between x and y .

Piecewise regression breaks the input space into distinct regions and
fit a different relationship in each region.
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Piecewise Constant Regression

How it works:

1. Divide the range of x into M regions by creating M − 1 cutpoints, or
knots, ξ1, . . . , ξM−1. Then construct the following dummy variables:

Region φ (x)

R1 φ1 (x) = I (x < ξ1)
R2 φ2 (x) = I (ξ1 ≤ x < ξ2)
...

...
RM φM (x) = I (ξM−1 ≤ x)
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Piecewise Constant Regression

How it works:

2. Fit the following model:

y = β1φ1 (x) + β2φ2 (x) + · · ·+ βMφM (x) + e (21)∑M
m=1 βmφm (x) is a step function or piecewise constant function, and

(21) is called a piecewise constant regression model.
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Piecewise Constant Regression

Solving (21) by least squares ⇒

β̂m = ym

, where ym ≡ 1
nm

∑
xi∈Rm yi

23.

i.e., for every x ∈ Rm, we make the same prediction, which is simply the
mean of the response values for the training observations in Rm.

23nm is the number of observations in Rm.
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Wage Profile

# cut(x,M) divides x into M pieces of equal length
# and generates the corresponding dummy variables
fit <- lm(wage ~ 0 + cut(age,4), data=Wage) # no intercept
coeftest(fit)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## cut(age, 4)(17.9,33.5] 94.1584 1.4761 63.790 < 2.2e-16 ***
## cut(age, 4)(33.5,49] 118.2119 1.0808 109.379 < 2.2e-16 ***
## cut(age, 4)(49,64.5] 117.8230 1.4483 81.351 < 2.2e-16 ***
## cut(age, 4)(64.5,80.1] 101.7990 4.7640 21.368 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Wage Profile
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Basis Functions

In general, φ (x) are called basis functions and do not have to be dummy
variables. They can be any functions of x .

A linear basis function model is defined as24:

y = β1φ1 (x) + β2φ2 (x) + · · ·+ βMφM (x) + e = β′Φ (x) + e (22)

, where β = (β1, . . . , βM)′ and Φ = (φ1, . . . , φM)′.

Solving (22) by least squares ⇒

β̂ =
(
Φ′Φ

)−1 Φ′Y

, where Φ = Φ (X ).

24Notice that (22) is the same as (21), except now φ (x) can be any function of x .
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Regression Splines

Polynomial and piecewise constant regression models are special cases
of linear basis function models25.

We can also do piecewise polynomial regression, which involves
fitting different polynomials over different regions of x .

25For example, for K−degree polynomial regressions,
φ1 (x) = 1, φ2 (x) = x , φ3 (x) = x2, . . . , φK (x) = xK .
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Regression Splines
Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 5
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FIGURE 5.1. The top left panel shows a piecewise
constant function fit to some artificial data. The bro-
ken vertical lines indicate the positions of the two knots
ξ1 and ξ2. The blue curve represents the true func-
tion, from which the data were generated with Gaus-
sian noise. The remaining two panels show piecewise
linear functions fit to the same data—the top right un-
restricted, and the lower left restricted to be continuous
at the knots. The lower right panel shows a piecewise–
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Regression Splines

Oftentimes it is desired that the fitted curve is continuous over the range
of x , i.e., there should be no jump at the knots.

For piecewise linear regression with one knot (ξ), this means:

y =
{
α10 + α11x + e x < ξ

α20 + α21 (x − ξ) + e x ≥ ξ
(23)

under the constraint that

α10 + α11ξ = α20 (24)

© Jiaming Mao



Regression Splines

(23) and (24) ⇒ the continuous piecewise linear model can be
parametrized as

y = β0 + β1x + β2 (x − ξ)+ + e (25)

, where β0 = α10, β1 = α11, β2 = α21 − α11, and
(x − ξ)+ ≡ (x − ξ) I (x ≥ ξ).
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Regression Splines

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 5
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constant function fit to some artificial data. The bro-
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Regression Splines

For higher-order piecewise polynomial regression, in addition to the fitted
curve being continuous, we may also want it to be smooth by requiring the
derivatives of the piecewise polynomials to be also continuous at the knots.

For piecewise cubic polynomial regression with one knot (ξ), this means:

y =
{
α10 + α11x + α12x2 + α13x3 + e x < ξ

α20 + α21 (x − ξ) + α22 (x − ξ)2 + α23 (x − ξ)3 + e x ≥ ξ
(26)

subject to the constraints that the piecewise polynomials as well as their
1st and 2nd derivatives are continuous at ξ:

α10 + α11ξ + α12ξ
2 + α13ξ

3 = α20 (27)
α11 + 2α12ξ + 3α13ξ

2 = α21

α12 + 3α13ξ = α22
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Regression Splines

(26) and (27) ⇒

y = β0 + β1x + β2x2 + β3x3 + β4 (x − ξ)3
+ + e (28)

, where β0 = α10, β1 = α11, β2 = α12, β3 = α13, and β4 = α23 − α13.
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Regression Splines

(25) and (28) are examples of regression splines. (25) is called a linear
spline and (28) is called a cubic spline.

Regression Spline
A degree−d spline is a piecewise degree−d polynomial, with continuity in
derivatives up to degree d − 1 at each knot.

In general, a degree−d spline with M − 1 knots has d + M degrees of
freedom26.

26For example, a linear spline has 1 + M degrees of freedom (see (25)). A cubic spline
has 3 + M degrees of freedom (see (28)). In comparison, a degree−d polynomial has
d + 1 degrees of freedom.
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Natural Splines

Splines tend to have high variance at the boundary (x < ξ1 or
x ≥ ξM−1, where M − 1 is the total number of knots).

A natural spline is a regression spline with additional boundary
constraints: the function is required to be linear beyond the boundary
knots, in order to produce more stable estimates.
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Wage Profile

require(splines)

# Cubic Spline
# ------------
# bs() generates B-spline basis functions with specified degrees
# of polynomials and knots. Here, knots at age 25,40,60
fit.cs <- lm(wage ~ bs(age,knots=c(25,40,60),degree=3), data=Wage)

# Natural Cubic Spline
# --------------------
# ns() fits a natural cubic spline
fit.ncs <- lm(wage ~ ns(age,knots=c(25,40,60)))
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Wage Profile

coeftest(fit.cs)

##
## t test of coefficients:
##
## Estimate Std. Error t value
## (Intercept) 60.4937 9.4604 6.3944
## bs(age, knots = c(25, 40, 60), degree = 3)1 3.9805 12.5376 0.3175
## bs(age, knots = c(25, 40, 60), degree = 3)2 44.6310 9.6263 4.6364
## bs(age, knots = c(25, 40, 60), degree = 3)3 62.8388 10.7552 5.8426
## bs(age, knots = c(25, 40, 60), degree = 3)4 55.9908 10.7063 5.2297
## bs(age, knots = c(25, 40, 60), degree = 3)5 50.6881 14.4018 3.5196
## bs(age, knots = c(25, 40, 60), degree = 3)6 16.6061 19.1264 0.8682
## Pr(>|t|)
## (Intercept) 1.863e-10 ***
## bs(age, knots = c(25, 40, 60), degree = 3)1 0.7508987
## bs(age, knots = c(25, 40, 60), degree = 3)2 3.698e-06 ***
## bs(age, knots = c(25, 40, 60), degree = 3)3 5.691e-09 ***
## bs(age, knots = c(25, 40, 60), degree = 3)4 1.815e-07 ***
## bs(age, knots = c(25, 40, 60), degree = 3)5 0.0004387 ***
## bs(age, knots = c(25, 40, 60), degree = 3)6 0.3853380
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Wage Profile

coeftest(fit.ncs)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 54.7595 5.1378 10.6581 < 2.2e-16 ***
## ns(age, knots = c(25, 40, 60))1 67.4019 5.0134 13.4442 < 2.2e-16 ***
## ns(age, knots = c(25, 40, 60))2 51.3828 5.7115 8.9964 < 2.2e-16 ***
## ns(age, knots = c(25, 40, 60))3 88.5661 12.0156 7.3709 2.181e-13 ***
## ns(age, knots = c(25, 40, 60))4 10.6369 9.8332 1.0817 0.2795
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Wage Profile
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Generalized Additive Models

So far we have been dealing with a single input x in our discussion of
polynomial regression and regression splines. A natural way to extend this
discussion to multiple inputs is to assume the following model:

y = ω0 + ω1 (x1) + ω2 (x2) + · · ·ωp (xp) + e (29)

, where

ωj (xj) =
Mj∑

m=1
βjmφjm (xj)

(29) is called a generalized additive model (GAM).
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Generalized Additive Models

The GAM allows for flexible nonlinear relationships in each dimension of
the input space while maintaining the additive structure of linear models.

For example, we can fit a linear relationship in x1, a polynomial in x2,
a cubic spline in x3, etc.

The GAM remains a linear basis function model and therefore can be
fit by least squares27.

27(29) is equivalent to
y = β′Φ (x) + e

, where Φ =
(
1, φ11, . . . , φ1M1 , . . . , φp1, . . . , φpMp

)′
.
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Wage Profile

fit <- lm(wage ~ poly(year,2) + ns(age,knots=c(25,40,60)) + education)
coeftest(fit)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 47.5751 4.8992 9.7108 < 2.2e-16 ***
## poly(year, 2)1 130.4942 35.2930 3.6974 0.0002217 ***
## poly(year, 2)2 -36.3005 35.2579 -1.0296 0.3032959
## ns(age, knots = c(25, 40, 60))1 51.1072 4.4572 11.4662 < 2.2e-16 ***
## ns(age, knots = c(25, 40, 60))2 33.1989 5.0767 6.5394 7.237e-11 ***
## ns(age, knots = c(25, 40, 60))3 53.5004 10.6621 5.0178 5.532e-07 ***
## ns(age, knots = c(25, 40, 60))4 12.3733 8.6866 1.4244 0.1544320
## education2. HS Grad 10.8174 2.4305 4.4507 8.871e-06 ***
## education3. Some College 23.3191 2.5626 9.0997 < 2.2e-16 ***
## education4. College Grad 37.9867 2.5464 14.9176 < 2.2e-16 ***
## education5. Advanced Degree 62.5184 2.7629 22.6275 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Wage Profile
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A GAM model of wage with a quadratic polynomial in year, a natural cubic
spline in age, and a step function in education
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Generalization Issues

Fitting a linear basis function model (22) can be thought of as a two-step
process:

1 Transform x into Φ (x)28.
I Let z = Φ (x) ∈ Z. Φ : X → Z is called a feature transform.

2 Fit the linear model: HΦ = {h : h (z) = β′z}, where HΦ denotes the
hypothesis set corresponding to the feature transform Φ.

28x can be multi-dimensional: x = (x1, . . . , xp)
© Jiaming Mao



Feature Transform

Left: data in X−space; Right: data in Z−space
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Generalization Issues

If we decide on the feature transform Φ before seeing the data, then the
VC generalization bound holds with dVC (HΦ) as the VC dimension.

I.e., for any g ∈ HΦ, with probability at least 1− δ,

Eout (g) ≤ Ein (g) +

√√√√ 8
N ln

4
(

(2N)dVC + 1
)

δ
(30)

= Ein (g) +O

√dVC
N ln N


, where dVC = dVC (HΦ).
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Generalization Issues

Therefore, when choosing a high-order polynomial, or a spline with many
degrees of freedom, or a GAM with complex nonlinearities in many
dimensions, we cannot avoid the approximation-generalization tradeoff:

More complex HΦ (dVC (HΦ) ↑) ⇒ Ein ↓

Less complex HΦ (dVC (HΦ) ↓) ⇒ |Eout − Ein| ↓

© Jiaming Mao



Generalization Issues

What if we try a transformation Φ1 first, and then, finding the results
unsatisfactory, decide to use Φ2? Then we are effectively using a model
that contains both {β′Φ1 (x)} and {β′Φ2 (x)}.

For example, if we try a linear model first, then a quadratic
polynomial, then a piecewise constant model, before settling on a
cubic spline, then dVC in (30) should be the VC dimension of a
hypothesis set that contains not only the cubic spline model, but all
of the aforementioned models.

The process of trying a series of models until we get a satisfactory
result is called specification search or data snooping. In general,
the more models you try, the poorer your final result will generalize
out of sample.
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Appendix: Frisch-Waugh-Lovell Theorem

Proof.
Define M .= I−H = I− X (X ′X )−1 X ′. Then for any Y , we can write

Y = X β̂ + ê = HY + MY

, where ê = Y − X (X ′X )−1 X ′Y = (I−H) Y = MY is orthogonal to X .

Now consider the model

Y = X1β1 + X2β2 + e

OLS estimation ⇒
Y = X1β̂ + X2β̂ + ê
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Appendix: Frisch-Waugh-Lovell Theorem

Proof. (cont.)
Define MX2

.= I− X2 (X ′2X2)−1 X ′2. Then

MX2Y = MX2X1β̂1 + MX2X2β̂2 + MX2 ê
[1]= MX2X1β̂1 + ê (31)

, where [1] follows since MX2X2 = 0 and MX2 ê = ê because ê ⊥ X2.

Finally, notice that because ê ⊥ X1, we also have ê ⊥MX2X1. Hence (31)
represents an orthogonal projection of MX2Y on R (MX2X1). Therefore,
OLS regression of MX2Y on MX2X1 will produce the same β̂1 as in (31).
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Appendix: Gradient Descent

5-2 Lecture 5: Gradient Descent

(a) Convex function (b) Non-convex function

Figure 5.1: Gradient Descent paths with di↵erent starting points are illustrated in di↵erent colours. In the
case of strictly convex function (lFigure a.), Gradient Descent paths starting from any points all lead to the
global optimum. Conversely, in the case of non-convex function, di↵erent paths may end up at di↵erent local
optima.

.

the first additive term is called linear approximation, and the second one is proximity term. Basically, the
proximity term tell us that we should not go to far from x, otherwise results in large f(y). To find optimal
value of y, we solve the equality rg(y) = 0 , rf(x)+ 1

t (y�x) = 0 , y = x� trf(x). Figure 5.2 illustrates
this optimal movement.

5.2 How to choose step sizes

Recall that the update rule of Gradient Descent requires a step size tk controlling the amount of gradient
updated to the current point at each iteration. A naive strategy is to set a constant tk = t for all iterations.
This strategy poses two problems. A too big t can lead to divergence, meaning the learning function oscillates
away from the optimal point. A too small t takes longer time for the function to converge. A good selection
of t can make the algorithm faster to converge, as illustrated in Figure 5.3. Hence, we need good strategies to
select appropriate step sizes. Two examples of such approaches are backtracking line search and exact
line search.

Backtracking line search The main idea of this strategy is to pick step sizes to reduce f approximately.
The strategy is described as follows.

• First fix two parameters 0 < � < 1 and 0 < ↵  0.5.

• At each iteration, start with t = 1, and while

f(x � trf(x)) > f(x) � ↵t||rf(x)||22, (5.6)

shrink t = �t. Else perform Gradient Descent update x+ = x � trf(x).

Gradient descent paths with different starting points
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