Regression

Jiaming Mao
Xiamen University

Copyright © 2017-2021, by Jiaming Mao This version: Fall 2021

Contact: jmao@xmu.edu.cn
Course homepage: jiamingmao.github.io/data-analysis

All materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International License.

Linear Regression

The linear regression model ${ }^{1}$ is a discriminative model with $f(x)=\mathbb{E}[y \mid x]^{2}$ as the target function and $\mathcal{H}=\{h(x)\}$ consisting of linear functions ${ }^{3}$:

$$
h(x)=x^{\prime} \beta
$$

, where $x=\left(1, x_{1}, \ldots, x_{p}\right)^{\prime}$ and $\beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{p}\right)^{\prime}$.
The goal is to find $g \in \mathcal{H}$ that best approximates f.

[^0]
Linear Regression

- Error measures:

$$
\begin{align*}
E_{\text {out }}(h) & =\mathbb{E}\left[(y-h(x))^{2}\right] \tag{1}\\
E_{\text {in }}(h) & =\frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-h\left(x_{i}\right)\right)^{2} \tag{2}
\end{align*}
$$

- The VC dimension of a linear model is $p+1^{4}$. For $N \gg p$, the linear model generalizes well from $E_{\text {in }}$ to $E_{\text {out }}$.

[^1]
Linear Regression

Let

$$
\begin{align*}
\beta^{*} & =\arg \min _{\beta}^{\mathbb{E}}\left[\left(y-x^{\prime} \beta\right)^{2}\right] \\
& =\underbrace{\mathbb{E}\left[x x^{\prime}\right]^{-1}}_{(p+1) \times(p+1)} \underbrace{\mathbb{E}[x y]}_{(p+1) \times 1} \tag{3}
\end{align*}
$$

- β^{*} is the population regression coefficient.
- $x^{\prime} \beta^{*}$ is the best ${ }^{5}$ linear predictor of y given x in the underlying population.

[^2]
Linear Regression

Recall that the CEF $f(x)=\mathbb{E}[y \mid x]$ is the best ${ }^{5}$ predictor of y given x in the class of all functions of x.

The function $x^{\prime} \beta^{*}$ provides the best ${ }^{5}$ linear approximation to the $C E F^{6}$:

$$
\beta^{*}=\underset{\beta}{\arg \min } \mathbb{E}\left[\left(\mathbb{E}[y \mid x]-x^{\prime} \beta\right)^{2}\right]
$$

${ }^{6}$ Generally,

$$
\begin{aligned}
& \underset{h}{\arg \min } \mathbb{E}\left[(y-h(x))^{2}\right]= \underset{h}{\arg \min } \mathbb{E}\left[(y-\mathbb{E}[y \mid x]+\mathbb{E}[y \mid x]-h(x))^{2}\right] \\
&= \underset{h}{\arg \min } \mathbb{E}\left[(y-\mathbb{E}[y \mid x])^{2}+(\mathbb{E}[y \mid x]-h(x))^{2}\right. \\
&+2(y-\mathbb{E}[y \mid x])(\mathbb{E}[y \mid x]-h(x))] \\
&= \arg \min \\
& \mathbb{E}\left[(\mathbb{E}[y \mid x]-h(x))^{2}\right]
\end{aligned}
$$

Linear Regression

Let $e^{*} \equiv y-x^{\prime} \beta^{*}$. By construction,

$$
\begin{equation*}
\underbrace{\mathbb{E}\left[x e^{*}\right]}_{(p+1) \times 1}=0 \tag{4}
\end{equation*}
$$

In particular, if x contains a constant term, then (4) $\Rightarrow \mathbb{E}\left[e^{*}\right]=0$. In this case e^{*} and x are uncorrelated.

Linear Regression

We can separate the constant term and write the linear model as

$$
y=\beta_{0}+\widetilde{x}^{\prime} \widetilde{\beta}+e
$$

, where $\widetilde{x}=\left(x_{1}, \ldots, x_{p}\right)^{\prime}$ and $\widetilde{\beta}=\left(\beta_{1}, \ldots, \beta_{p}\right)^{\prime}$.
Then (3) \Rightarrow

$$
\begin{align*}
\widetilde{\beta}^{*} & =\mathbb{V}(\widetilde{x})^{-1} \operatorname{Cov}(\widetilde{x}, y) \tag{5}\\
\beta_{0}^{*} & =\mathbb{E}[y]-\mathbb{E}[\widetilde{x}]^{\prime} \widetilde{\beta}^{*}
\end{align*}
$$

Linear Regression

When $p=1$,

$$
y=\beta_{0}+\beta_{1} x+e
$$

$(5) \Rightarrow$

$$
\begin{aligned}
& \beta_{1}^{*}=\frac{\operatorname{Cov}(x, y)}{\mathbb{V}(x)} \\
& \beta_{0}^{*}=\mathbb{E}[y]-\beta_{1}^{*} \mathbb{E}[x]
\end{aligned}
$$

The OLS Estimator

Given observed data $\mathcal{D}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\} \sim^{\text {i.i.d. }} p(x, y)$, we have, for $i=1, \ldots, N$,

$$
\begin{equation*}
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{p} x_{i p}+e_{i} \tag{6}
\end{equation*}
$$

, which can be written as

$$
\begin{equation*}
Y=X \beta+e \tag{7}
\end{equation*}
$$

, where $Y=\left[y_{1}, \ldots, y_{N}\right]^{\prime}, e=\left[e_{1}, \ldots, e_{N}\right]^{\prime}$, and

$$
X=\left[\begin{array}{cccc}
1 & x_{11} & \cdots & x_{1 p} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{N 1} & \cdots & x_{N p}
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{\prime} \\
\vdots \\
x_{N}^{\prime}
\end{array}\right]
$$

, where $x_{i}=\left[1, x_{i 1}, \ldots, x_{i p}\right]^{\prime}$.

The OLS Estimator

Minimizing the in-sample error (2) \Rightarrow

$$
\begin{align*}
\widehat{\beta} & =\left[\sum_{i=1}^{N} x_{i} x_{i}^{\prime}\right]^{-1} \sum_{i=1}^{N} x_{i} y_{i} \tag{8}\\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} Y
\end{align*}
$$

$\widehat{\beta}$ is the least squares regression coefficient - the sample estimate of β^{*}.

Geometric Interpretation

Consider two n-dimensional vectors: $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right)$. The Euclidean distance between a and b is:

$$
\|a-b\|=\sqrt{\sum_{i=1}^{n}\left(a_{i}-b_{i}\right)^{2}}=\sqrt{(a-b) \cdot(a-b)}
$$

The cosine of the angle between a and b is:

$$
\cos \theta=\frac{a \cdot b}{\|a\|\|b\|}
$$

, where $\|a\|=\|a-0\|$ is the length of a.
When $a \cdot b=0, a$ and b are orthogonal, denoted by $a \perp b$.

Geometric Interpretation

The linear space spanned by a, denoted by $\mathcal{R}(a)$, is the collection of points $\beta a=\left(\beta a_{1}, \ldots, \beta a_{n}\right)$ for any real number β.

The projection of b onto $\mathcal{R}(a)$ is the point b^{*} in $\mathcal{R}(a)$ that is closest to b in terms of Euclidean distance:

$$
b^{*}=\left(\frac{a \cdot b}{\|a\|^{2}}\right) a
$$

- $\left(b-b^{*}\right) \perp a$

Geometric Interpretation

Euclidean Distance in two Dimensions

Geometric Interpretation

Geometric Interpretation

The least squares linear regression fit \widehat{Y} is the projection of Y onto the linear space spanned by $\left\{\mathbf{1}, X_{1}, \ldots, X_{p}\right\}^{7}$.

$$
{ }^{7} X_{j}=\left(x_{1 j}, \ldots, x_{N j}\right)^{\prime} \text { for } j=1, \ldots, p
$$

Geometric Interpretation

- Projection matrix $\mathbb{H}=X\left(X^{\prime} X\right)^{-1} X^{\prime}$

$$
\mathbb{H} Y=\widehat{Y}
$$

- \mathbb{H} is also called the hat matrix ${ }^{8,9}$.
- $\hat{e}=Y-X \widehat{\beta}=(\mathbb{I}-\mathbb{H}) Y \perp \mathcal{R}\left(1, X_{1}, \ldots, X_{p}\right)$.
- $\widehat{e} \perp X_{j} \forall j$.
- $\widehat{e} \perp \mathbf{1} \Rightarrow \sum_{i} \widehat{e}_{i}=0$.
${ }^{8}$ Since it "puts a hat" on Y.
${ }^{9}$ The hat matrix has many special properties such as: $\mathbb{H}^{2}=\mathbb{H},(\mathbb{I}-\mathbb{H})^{2}=(\mathbb{I}-\mathbb{H})$, and trace $(\mathbb{H})=1+p$.

Frisch-Waugh-Lovell Theorem

Frisch-Waugh-Lovell Theorem

Given linear model (6), the OLS solution is $\widehat{\beta}=\left(\widehat{\beta}_{1}, \ldots, \widehat{\beta}_{p}\right)$, where

$$
\begin{equation*}
\widehat{\beta}_{j}=\frac{\sum_{i=1}^{N} \widehat{u}_{j i} \widehat{\varepsilon}_{i j}}{\sum_{i=1}^{N} \widehat{u}_{i j}^{2}}=\left(\widehat{u}_{j}^{\prime} \widehat{u}_{j}\right)^{-1} \widehat{u}_{j}^{\prime} \widehat{\varepsilon}_{j} \tag{9}
\end{equation*}
$$

, where $\widehat{u}_{j}=\left(\widehat{u}_{1 j}, \ldots, \widehat{u}_{N j}\right)^{\prime}$ is the estimated residual from a regression of x_{j} on $x_{-j}{ }^{a}$, and $\widehat{\varepsilon}_{j}=\left(\widehat{\varepsilon}_{1 j}, \ldots, \widehat{\varepsilon}_{N j}\right)^{\prime}$ is the estimated residual from a regression of y on x_{-j}.

Proof

$$
{ }^{a} x_{-j}=\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{p}\right)
$$

Frisch-Waugh-Lovell Theorem

- The Frisch-Waugh-Lovell theorem says that to obtain $\widehat{\beta}_{j}$, we can ${ }^{10}$
(1) regress y on all predictors other than x_{j} to obtain residual $\widehat{\varepsilon}_{j}$
(2) regress x_{j} on all the other predictors to obtain residual \widehat{u}_{j}
(3) regress $\widehat{\varepsilon}_{j}$ on \widehat{u}_{j}
- $\widehat{\beta}_{j}$ is the slope coefficient on a scatter plot with $\widehat{\varepsilon}_{j}$ on the y-axis and \widehat{u}_{j} on the x-axis.
- The geometric interpretation is that $\left(\widehat{\varepsilon}_{j}, \widehat{u}_{j}\right) \perp x_{-j}$ - they are the residuals in $\left(x_{j}, y\right)$ after orthogonalizing away the influence of the other predictors.

[^3]
Frisch-Waugh-Lovell Theorem

Generate some data:

$$
\begin{aligned}
x_{1} & \sim U(0,1) \\
x_{2} & =0.5 x_{1}+0.5 r, r \sim U(0,1) \\
y & =1-2.5 x_{1}+5 x_{2}+e, e \sim \mathcal{N}(0,1)
\end{aligned}
$$

```
n <- 500
e <- rnorm(n)
x1 <- runif(n)
x2 <- 0.5*x1 + 0.5*runif(n)
y<-1-2.5*x1 + 5*x2 +e
```


Frisch-Waugh-Lovell Theorem

```
require(AER)
reg <- lm(y ~ x1 + x2)
coeftest(reg)
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.01013 0.11884 8.4997 2.233e-16 ***
## x1 -2.59166 0.22529 -11.5039 < 2.2e-16 ***
## x2 5.06250 0.31213 16.2193 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Frisch-Waugh-Lovell Theorem

```
# to obtain beta1, we first regress y and x1 on x2
u1 <- residuals(lm(x1~x2))
e1 <- residuals(lm(y~x2))
b1 <- cov(u1,e1)/var(u1)
# to obtain beta2, we first regress y and x2 on x1
u2 <- residuals(lm(x2~x1))
e2 <- residuals(lm(y~x1))
b2 <- cov(u2,e2)/var(u2)
b0 <- mean(y) - b1*mean(x1) - b2*mean(x2)
cbind(b0,b1,b2)
## b0 b1 b2
## [1,] 1.010133 -2.591657 5.062497
```


Frisch-Waugh-Lovell Theorem

```
# Alternatively,
b1 <- cov(u1,y)/var(u1)
b2 <- cov(u2,y)/var(u2)
b0 <- mean(y) - b1*mean(x1) - b2*mean(x2)
cbind(b0,b1,b2)
## b0 b1 b2
## [1,] 1.010133 -2.591657 5.062497
```


Frisch-Waugh-Lovell Theorem

Numerical Solution

- (8) is the analytical solution to the problem:

$$
\begin{equation*}
\min _{\beta} \sum_{i=1}^{N}\left(y_{i}-x_{i}^{\prime} \beta\right)^{2} \tag{10}
\end{equation*}
$$

- For many problems, however, such analytical solutions do not exist. How do we solve (10) numerically?

Gradient Descent

- Gradient descent is a method that finds a minimum of a function by figuring out in which direction the function's slope is rising the most steeply, and moving in the opposite direction.
- If the function that we are trying to minimize is differentiable and convex, then it has a unique global minimum ${ }^{11}$. In this case, gradient descent starting from any point is guaranteed to find the minimum.

[^4]
Gradient Descent

Let the function that we want to minimize be $f(\theta)$, so that we are looking for

$$
\theta^{*}=\underset{\theta}{\arg \min } f(\theta)
$$

Gradient descent is based on a simple observation: at any point $\theta, \nabla f(\theta)$ is a vector pointing in the direction of the greatest increase in f. Hence, to find θ^{*}, we need to move in the direction of $-\nabla f(\theta)$.

Gradient Descent

Gradient Descent

Gradient Descent

so we move in the negative direction.

Gradient Descent

Gradient Descent Algorithm

Start with $\theta^{(0)}$.

repeat

$$
\theta^{(t)}:=\theta^{(t-1)}-\eta \cdot \nabla f\left(\theta^{(t-1)}\right)
$$

until $\left\|\nabla f\left(\theta^{(t)}\right)\right\| \leq$ tolerance
return $\theta^{(t)}$

Gradient Descent

- We can run gradient descent until the gradient is close to zero. Alternatively, we can run the algorithm for a fixed number of steps.
- η is the step size, also called the learning rate. If it's too large, we may easily overshoot the minimum of f. If it's too small, it may take too long to get to the minimum. It is common to start with a higher learning rate and then slowly decrease it as we approach the minimum.

Gradient Descent

Small, large, and variable learning rate

Gradient Descent for Linear Regression

For linear regression, the objective function we want to minimize is:

$$
\begin{aligned}
f(\beta) & =\sum_{i=1}^{N}\left(y_{i}-x_{i}^{\prime} \beta\right)^{2} \\
& =(Y-X \beta)^{\prime}(Y-X \beta)
\end{aligned}
$$

$$
\nabla f(\beta)=2(X \beta-Y)^{\prime} X
$$

Gradient Descent for Linear Regression

```
######################
# Objective Function #
######################
mse <- function(X,y,beta){
    N <- length(y)
    Z <- y - X%*%beta
    mse <- t(Z)%*%Z/N
}
#####################
# Gradient Function #
#####################
grad <- function(X,y,beta){
    N <- length(y)
    grad <- 2*t(X)%*%(X%*%beta-y)/N
}
```


Gradient Descent for Linear Regression

```
#############################
# Gradient Descent Function #
#############################
# eta: learning rate
# niter: number of iterations
gradientDescent <- function(X,y,beta0,eta,niter){
    beta <- beta0
    mse_hist <- rep(0,niter) # stores history of mse
    beta_hist <- list(niter) # stores history of beta
    for (i in 1:niter){
            beta_hist[[i]] <- beta
            mse_hist[i] <- mse(X,y,beta)
            beta <- beta - eta*grad(X,y,beta) # update beta
        }
    result <- list("beta"=beta,"mse_hist"=mse_hist,"beta_hist"=beta_hist)
    return(result)
}
```


Gradient Descent for Linear Regression

```
################
# Simulation 1 #
################
# generate some data
## note: "true mse" = var(e) = 1
n <- 500
e <- rnorm(n)
x <- runif(n)
y<- 2*x + e
# Gradient Descent
## initial guess: 0; learning rate: 2.5; iteration: 10
X <- cbind(x) # make }x\mathrm{ column vector
result <- gradientDescent(X,y,0,2.5,10)
result$beta
\begin{tabular}{lr} 
\#\# & {\([, 1]\)} \\
\#\# & x \\
\hline
\end{tabular}
```


Gradient Descent for Linear Regression

(C) Jiaming Mao

Gradient Descent for Linear Regression

(C) Jiaming Mao

Gradient Descent for Linear Regression

```
################
# Simulation 2 #
################
n <- 500
e <- rnorm(n)
x <- runif(n)
y<- -2 + 4*x +e
# Gradient Descent
## learning rate: 0.05; iteration: 1000
X <- cbind(rep(1,n),x) # X matrix
result <- gradientDescent(X,y,c(0,0),0.05,1000)
result$beta
\begin{tabular}{lr} 
\#\# & {\([, 1]\)} \\
\#\# & -2.005872 \\
\#\# x & 3.989831
\end{tabular}
```


Gradient Descent for Linear Regression

(C) Jiaming Mao

Asymptotic Properties

- $\widehat{\beta}$ is unbiased: $\mathbb{E}(\widehat{\beta})=\beta^{*}$.
- But how much does $\widehat{\beta}$ vary around β^{*} ?

Asymptotic Properties

red: $x^{\prime} \beta^{*}$. blue: $x^{\prime} \widehat{\beta}$
Right: $x^{\prime} \widehat{\beta}$ based on 10 random set of observations.

Asymptotic Properties

(C) Jiaming Mao

Asymptotic Properties

Asymptotic Properties

By the central limit theorem,

$$
\sqrt{N}\left(\widehat{\beta}-\beta^{*}\right) \longrightarrow^{d} \mathcal{N}\left(0, E\left(x x^{\prime}\right)^{-1} E\left[x x^{\prime}\left(e^{*}\right)^{2}\right] E\left(x x^{\prime}\right)^{-1}\right)
$$

- $\mathrm{V}(\widehat{\beta}) \doteq \underbrace{N^{-1} E\left(x x^{\prime}\right)^{-1} E\left[x x^{\prime}\left(e^{*}\right)^{2}\right] E\left(x x^{\prime}\right)^{-1}}_{(p+1) \times(p+1)}$ is the asymptotic
variance of $\widehat{\beta}$ conditional on x.
- $\mathrm{V}(\widehat{\beta})$ quantifies the uncertainty of $\widehat{\beta}$ due to random sampling.

Asymptotic Properties

$$
\begin{align*}
& \begin{aligned}
\hat{\mathrm{V}}(\hat{\beta}) & =\left[\sum_{i=1}^{N} x_{i} x_{i}^{\prime}\right]^{-1}\left(\sum_{i=1}^{N} x_{i} x_{i}^{\prime} \hat{e}_{i}^{2}\right)\left[\sum_{i=1}^{N} x_{i} x_{i}\right]^{-1} \\
& =\left(X^{\prime} X\right)^{-1}\left(X^{\prime} \Omega X\right)\left(X^{\prime} X\right)^{-1} \rightarrow \rightarrow^{p} \vee(\hat{\beta}) \\
\text { where } \Omega=\operatorname{diag}\left(\hat{e}_{1}^{2}, \ldots, \hat{e}_{N}^{2}\right) & =\left[\begin{array}{ccc}
\hat{e}_{1}^{2} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \hat{e}_{N}^{2}
\end{array}\right] .
\end{aligned} . \tag{11}
\end{align*}
$$

Asymptotic Properties

Homoskedasticity: $\mathbb{E}\left[\left(e^{*}\right)^{2} \mid x\right]=\sigma^{2}$
Heteroskedasticity: $\mathbb{E}\left[\left(e^{*}\right)^{2} \mid x\right]=\sigma^{2}(x)$
Under homoskedasticity,

$$
\begin{gather*}
\sqrt{N}\left(\widehat{\beta}-\beta^{*}\right) \longrightarrow{ }^{d} \mathcal{N}\left(0, E\left(x x^{\prime}\right)^{-1} \sigma^{2}\right) \\
\widehat{V}(\widehat{\beta})=\left(X^{\prime} X\right)^{-1} \hat{\sigma}^{2} \tag{12}
\end{gather*}
$$

Asymptotic Properties

From (9), we can also derive the homoskedastic asymptotic variance of $\widehat{\beta}_{j}$

- the $(j+1)$-th diagonal element of $\mathrm{V}(\widehat{\beta})$ - as:

For $j=1, \ldots, p$,

$$
\begin{gather*}
\sqrt{N}\left(\widehat{\beta}_{j}-\beta_{j}^{*}\right) \longrightarrow{ }^{d} \mathcal{N}\left(0, \frac{\sigma^{2}}{\mathbb{V}\left(u_{j}\right)}\right) \\
\widehat{V}\left(\widehat{\beta}_{j}\right)=\frac{\widehat{\sigma}^{2}}{\widehat{u}_{j}^{\prime} \widehat{u}_{j}} \tag{13}
\end{gather*}
$$

Asymptotic Properties

- t-statistic

$$
t_{j}=\frac{\widehat{\beta}_{j}-\beta_{j}^{*}}{\widehat{\operatorname{se}}\left(\widehat{\beta}_{j}\right)} \rightarrow^{d} \mathcal{N}(0,1)
$$

, where $\widehat{\operatorname{se}}\left(\widehat{\beta}_{j}\right)=\sqrt{\widehat{\mathrm{V}}\left(\widehat{\beta}_{j}\right)}$.

- 95% confidence interval for β_{j}^{*} :

$$
\left[\widehat{\beta}_{j}-1.96 \times \widehat{\operatorname{se}}\left(\widehat{\beta}_{j}\right), \widehat{\beta}_{j}+1.96 \times \widehat{\operatorname{se}}\left(\widehat{\beta}_{j}\right)\right]
$$

- The interval represents a set estimate of β_{j}^{*}.

Hypothesis Testing

```
\mp@subsup{H}{0}{}}:\mp@subsup{\beta}{j}{*}=0\mathrm{ vs. }\mp@subsup{\mathbb{H}}{1}{}:\mp@subsup{\beta}{j}{*}\not=
```

Under \mathbb{H}_{0},

$$
\begin{equation*}
t_{j}=\frac{\widehat{\beta}_{j}}{\widehat{\operatorname{se}}\left(\widehat{\beta}_{j}\right)} \rightarrow^{d} \mathcal{N}(0,1) \tag{14}
\end{equation*}
$$

P-value: probability of observing any value more extreme than $\left|t_{j}\right|$ under \mathbb{H}_{0}. $(14) \Rightarrow$ in large sample,

$$
\begin{equation*}
p-\text { value } \approx 2\left(1-\Phi\left(\left|t_{j}\right|\right)\right) \tag{15}
\end{equation*}
$$

, where Φ is the CDF of $\mathcal{N}(0,1)$.

Hypothesis Testing

For significance level α, reject \mathbb{H}_{0} if $\left|t_{j}\right|>c_{\alpha}=\Phi^{-1}(1-\alpha / 2)$, or equivalently, if p-value $<\alpha^{12}$.

- c_{α} is called the asymptotic critical value.
- Common practice: $\alpha=5 \%$ ($c .05 \approx 1.96$), $\alpha=10 \% ~(c .10 \approx 1.64)$, $\alpha=1 \%(c .01 \approx 2.58)$.

[^5]
Hypothesis Testing

Hypothesis Testing Decisions

	Accept \mathbb{H}_{0}	
${ }^{l}{\text { Reject } \mathbb{H}_{0}}^{\mathbb{H}_{0}}$ true	Correct Decision	Type I Error
\mathbb{H}_{1} true	Type II Error	Correct Decision

- α is the size of the test - the probability of making a Type I error: $\operatorname{Pr}\left(\right.$ reject $\mathbb{H}_{0} \mid \mathbb{H}_{0}$ is true $)$.
- The power or sensitivity of a test, is the probability of rejecting \mathbb{H}_{0} when \mathbb{H}_{1} is true. Thus (1 - power), denoted by β, is the probability of making a Type II error: $\operatorname{Pr}\left(\right.$ fail to reject $\mathbb{H}_{0} \mid \mathbb{H}_{1}$ is true).
- Power \uparrow as $\alpha \uparrow$, or sample size $N \uparrow$, or the true (population) parameter value is further away from its hypothesized value under \mathbb{H}_{0}.

Hypothesis Testing

(C) Jiaming Mao

Hypothesis Testing

(C) Jiaming Mao

Hypothesis Testing

$$
R^{2}=\frac{\sum_{i=1}^{N}\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}}=1-\frac{\sum_{i=1}^{N} \widehat{e}_{i}^{2}}{\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}}
$$

- measures the amount of variation in y_{i} accounted for by the model: $1=$ perfect, $0=$ perfect misfit.
- cannot go down when you add regressors.
- Intuition: adding more regressors always allow us to fit the training data more accurately (i.e., reduce $E_{i n}$, but not necessary $\left.E_{\text {out }}\right)^{13}$.
${ }^{13}$ Technically, $\widehat{\beta}$ is chosen to minimize $\sum_{i} \widehat{e}^{2}$. if you add a regressor, you can always set the coefficient of that regressor equal to zero to get the same $\sum_{i} \hat{e}^{2}$. Therefore R^{2} cannot go down.

Robust Standard Errors

(11) is known as heteroskedasticity-consistent (HC) standard error, robust standard error, or White standard error.

Let's generate some data:

$$
\begin{aligned}
& x=U(0,100) \\
& y=5 x+e, e \sim \mathcal{N}(0, \exp (x))
\end{aligned}
$$

```
n <- 1e3
x <- 100*runif(n)
y <- rnorm(n,mean=5*x,sd=exp (x))
```


Robust Standard Errors

```
require(AER)
coeftest(lm(y~x)) # homoskedastic standard error
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0116e+41 9.0736e+40 1.1148 0.26519
## x -3.0822e+39 1.5634e+39 -1.9715 0.04895 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coeftest(lm(y~x),vcov=vcovHC) # robust standard error
##
## t test of coefficients:
##
\begin{tabular}{lrrrr} 
\#\# & Estimate & Std. Error t value & \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
\#\# (Intercept) & \(1.0116 \mathrm{e}+41\) & \(8.6253 \mathrm{e}+40\) & 1.1728 & 0.2412 \\
\#\# x & \(-3.0822 \mathrm{e}+39\) & \(2.6314 \mathrm{e}+39\) & -1.1713 & 0.2417
\end{tabular}
```


The Bootstrap

- The bootstrap is a statistical tool that can be used to quantify the uncertainty associated with a given estimator or statistical method.
- For example, it can provide an estimate of the standard error of a coefficient.
- The term is believed to derive from "The Surprising Adventures of Baron Munchausen" by Rudolph Erich Raspe ${ }^{14}$:

The Baron had fallen to the bottom of a deep lake. Just when it looked like all was lost, he thought to pick himself up by his own bootstraps.

[^6]
The Bootstrap

Baron Munchausen pulls himself out of a mire by his own hair (illustration by Oskar Herrfurth)
(C) Jiaming Mao

The Bootstrap

- The idea is simple: suppose we want to estimate the standard error of $\widehat{\beta}$. If we can generate many independent samples from the underlying population, then we can estimate our model on each sample, based on which we can compute an estimate of $\mathbb{V}(\widehat{\beta})^{15}$.

[^7]
The Bootstrap

- In practice, we do not have access to the underlying population and do not know the true $p(x, y)$, but we can treat the empirical distribution as an estimate of the true distribution and draw new samples out of the observed sample itself.
- Each generated bootstrap sample contains the same number of observations as the original observed sample ${ }^{16}$. To accomplish this, we repeatedly draw observations from the observed sample with replacement.

[^8]
The Bootstrap

Suppose we observe the following data set: $x=\{0,0,0,1,1\}$. Then the empirical distribution of x is $\operatorname{Pr}(x=0)=0.6$ and $\operatorname{Pr}(x=1)=0.4$.
If we believe this is a good approximation of the underlying true distribution of x, then we can generate new samples from this distribution. In practice, this can be accomplished by drawing from $\{0,0,0,1,1\}$ with replacement.

The Bootstrap

The bootstrap approach on a sample containing 3 observations.

Portfolio Choice

We wish to invest a fixed sum of money in two financial assets that yield returns of X and Y. Suppose our goal is to minimize the total risk, or variance, of our investment. Then the problem is to choose α such that

$$
\begin{equation*}
\alpha=\arg \min _{\gamma} \mathbb{V}(\gamma X+(1-\gamma) Y) \tag{16}
\end{equation*}
$$

$(16) \Rightarrow$

$$
\begin{equation*}
\alpha=\frac{\sigma_{Y}^{2}-\sigma_{X Y}}{\sigma_{X}^{2}+\sigma_{Y}^{2}-2 \sigma_{X Y}} \tag{17}
\end{equation*}
$$

Portfolio Choice

- Given data on (X, Y), we can estimate $\widehat{\sigma}_{X}^{2}, \widehat{\sigma}_{Y}^{2}, \widehat{\sigma}_{X Y}$ and compute $\widehat{\alpha}$.
- To estimate the standard error of $\widehat{\alpha}$, we generate R bootstrap samples from the observed data and estimate αR times \Rightarrow

$$
\begin{aligned}
\widehat{\alpha} & =\frac{1}{R} \sum_{r=1}^{R} \widehat{\alpha}_{r} \\
\widehat{s e}(\widehat{\alpha}) & =\sqrt{\frac{1}{R-1} \sum_{r=1}^{R}\left(\widehat{\alpha}_{r}-\widehat{\alpha}\right)^{2}}
\end{aligned}
$$

Portfolio Choice

```
# Function to calculate alpha
alpha <- function(data,index){
    X <- data$X[index]
    Y <- data$Y[index]
    return((var (Y)-cov (X,Y))/(var(X)+\operatorname{var}(Y)-2*\operatorname{cov}(X,Y)))
}
# 'Portfolio' is a simulated data set containing the returns of }X\mathrm{ and Y
require(ISLR) # contains 'Portfolio'
n <- nrow(Portfolio)
bootsample <- sample(n,n,replace=T) # generate one bootstrap sample
alpha(Portfolio,bootsample) # calculate alpha based on the bootstrap sample
## [1] 0.6618485
```


Portfolio Choice

```
# Calculate alpha based on 1000 bootstrap samples
require(boot)
boot(Portfolio,alpha,R=1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = Portfolio, statistic = alpha, R = 1000)
##
##
## Bootstrap Statistics :
\begin{tabular}{lrcr} 
\#\# & original & bias & std. error \\
\#\# t1* & 0.5758321 & 0.007540109 & 0.0895633
\end{tabular}
```


Portfolio Choice

Histogram of $\widehat{\alpha}$ obtained from bootstrap samples

MPG and Horsepower

(C) Jiaming Mao

MPG and Horsepower

```
require(ISLR) # contains the data set 'Auto'
require(boot)
beta <- function(data,index){
    coef(lm(mpg~horsepower,data=data, subset=index))
}
boot(Auto,beta,R=1000) # bootstrap std err
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = Auto, statistic = beta, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 39.9358610 0.0378395594 0.877270914
## t2* -0.1578447 -0.0004406186 0.007475398
```


MPG and Horsepower

```
require(AER)
coeftest(lm(mpg ~ horsepower, data=Auto)) # homoskedastic std err
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr}>>|||
## (Intercept) 39.9358610 0.7174987 55.660<2.2e-16 ***
## horsepower -0.1578447 0.0064455 -24.489 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


MPG and Horsepower

```
coeftest(lm(mpg ~ horsepower, data=Auto),vcov=vcovHC) # robust std err
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr
## (Intercept) 39.9358610 0.8644903 46.196 < 2.2e-16 ***
## horsepower -0.1578447 0.0074943 -21.062 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Log-Linear Regression

When y changes on a multiplicative or percentage scale, it is often appropriate to use $\log (y)$ as the dependent variable ${ }^{17}$:

$$
y=A e^{\beta x+e} \Rightarrow \log (y)=\log (A)+\beta x+e
$$

e.g.,

$$
\log (\mathrm{GDP})=\alpha+g \times t+e
$$

, where $t=$ years, $\alpha=\log$ (base year GDP), and $g=$ annual growth rate.

[^9]
Log-Linear Regression

${ }^{18}$ Note: in general, $E[f(y)] \neq f(E[y])$. In particular, by the Jensen's inequality, $E[\log (y)]<\log (E[y])$. Therefore, if $E[\log (y) \mid x]=\alpha+\beta x$, then $E[y \mid x]>\exp (\alpha+\beta x)$.

If we are willing to assume

$$
\log (y)=\alpha+\beta x+e, e \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

, then we have: $E[y \mid x]=\exp \left(\alpha+\beta x+\frac{1}{2} \sigma^{2}\right)=\exp \left(E[\log (y) \mid x]+\frac{1}{2} \sigma^{2}\right)$.

Elasticity and Log-Log Regression

In a log-log model:

$$
\log (y)=\beta_{0}+\beta_{1} \log (x)+e
$$

β_{1} can often be interpreted as an elasticity measure:

$$
\beta_{1}=\frac{\partial \log (y)}{\partial \log (x)}=\frac{\partial y / y}{\partial x / x} \approx \frac{\% \Delta y}{\% \Delta x}
$$

e.g.,

$$
\log (\text { sales })=\beta_{0}+\beta_{1} \log (\text { price })+e
$$

Orange Juice

Three brands: Tropicana, Minute Maid, Dominick's
Data from 83 stores on price, sales (units moved), and whether featured in the store

(C) Jiaming Mao

Orange Juice

```
log(sales) =\alpha+\beta log (price) +e
require(AER)
oj <- read.csv('oj.csv')
reg1 <- lm(logmove ~ log(price), data=oj)
coeftest(reg1)
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.4234 0.0154 679.0 <2e-16 ***
## log(price) -1.6013 0.0184 -87.2 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Orange Juice

```
log(sales) = \alpha 
reg2 <- lm(logmove ~ log(price)*brand, data=oj)
coeftest(reg2)
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.9547 0.0207 529.14 <2e-16 ***
## log(price) -3.3775 0.0362 -93.32 <2e-16 ***
## brandminute.maid 0.8883 0.0416 21.38 <2e-16 ***
## brandtropicana
    0.9624 0.0464 20.72 <2e-16
    0.0568 0.0573 0.99 0.32
## log(price):brandminute.maid
    0.6658 0.0535
## log(price):brandtropicana
    0.0535 12.44 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Orange Juice

```
log(sales)}=(\mp@subsup{\alpha}{0b}{}+\mathrm{ feature }\times\mp@subsup{a}{1b}{})+(\mp@subsup{\beta}{0b}{}+\mathrm{ feature }\times\mp@subsup{\beta}{1b}{})\times\operatorname{log}(\mathrm{ price })+
reg3 <- lm(logmove ~ log(price)*brand*feat, data=oj)
coeftest(reg3)
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept)
## log(price)
## brandminute.maid
## brandtropicana
## feat
## log(price):brandminute.maid
## log(price):brandtropicana
## log(price):feat
## brandminute.maid:feat
## brandtropicana:feat
## log(price):brandminute.maid:feat
## log(price):brandtropicana:feat
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Orange Juice

- Elasticity ${ }^{19}$: -1.6
- Brand-specific elasticities:

Dominick's: -3.4 , Minute Maid: -3.4 , Tropicana: -2.7

- How does featuring a product affect its elasticity?

Dominick's Minute Maid Tropicana

not featured	-2.8	-2.0	-2.0
featured	-3.2	-3.6	-3.5

[^10]
CAPM

The Capital Asset Pricing Model (CAPM) for asset A relates return $R_{A, t}$ to the market return, $R_{M, t}$:

$$
R_{A, t}=\alpha+\beta R_{M, t}+e
$$

When asset A is a mutual fund, this CAPM regression can be used as a performance benchmark for fund managers.

```
# 'mfunds.csv' contains data on the historical returns of
# 6 mutual funds as well as the market return
mfund <- read.csv('mfunds.csv')
mu <- apply(mfund,2,mean)
stdev <- apply(mfund,2,sd)
```


CAPM

Mutual Funds

CAPM

```
CAPM <- lm(as.matrix(mfund[,1:6]) ~ mfund$valmrkt)
CAPM
##
## Call:
## lm(formula = as.matrix(mfund[, 1:6]) ~ mfund$valmrkt)
##
## Coefficients:
\begin{tabular}{lcllrr} 
\#\# & drefus & fidel & keystne & Putnminc & \multicolumn{1}{l}{ scudinc } \\
\#\# (Intercept) & 0.0003462 & -0.0029655 & -0.0037704 & 0.0028271 & 0.000281 \\
\#\# mfund\$valmrkt & 0.9424286 & 1.1246549 & 1.5137186 & 0.3948280 & 0.609202 \\
\#\# & windsor & & & & \\
\#\# (Intercept) & 0.0036469 & & & & \\
\#\# mfund\$valmrkt & 0.9357170 & & & &
\end{tabular}
```


CAPM

Mutual Funds

(C) Jiaming Mao

CAPM

Look at windsor (which dominates the market):

(C) Jiaming Mao

CAPM

```
Does Windsor have an "alpha" over the market?
H}\mp@subsup{\mathbb{H}}{0}{}:\alpha=0 vs. \mathbb{H}1:\alpha\not=
require(AER)
reg <- lm(mfund$windsor ~ mfund$valmrkt)
coeftest(reg)
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr}(>|t|
## (Intercept) 0.0036469 0.0014094 2.5876 0.01046 *
## mfund$valmrkt 0.9357170 0.0291499 32.1002 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


CAPM

Now look at beta:

```
\mp@subsup{H}{0}{}}:\beta=1, Windsor is just the market (+ alpha).
#}\mp@subsup{\mathbb{H}}{1}{}:\beta\not=1\mathrm{ , Windsor softens or exaggerates market moves.
linearHypothesis(reg, "mfund$valmrkt = 1")
## Linear hypothesis test
##
## Hypothesis:
## mfund$valmrkt = 1
##
## Model 1: restricted model
## Model 2: mfund$windsor ~ mfund$valmrkt
##
## Res.Df RSS Df Sum of Sq F Pr (>F)
## 1 179 0.064082
## 2 178 0.062378 1 0.0017042 4.8632 0.02872 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Rregression Diagnostics: Is the CEF linear?

Rregression Diagnostics: Is the CEF linear?

Anscombe's quartet comprises four datasets that have similar statistical properties ...

```
anscombe <- read.csv('anscombe.csv')
attach(anscombe)
c(x.m1=mean(x1),x.m2=mean(x2),x.m3=mean(x3),x.m4=mean(x4))
## x.m1 x.m2 
c(y.m1=mean(y1),y.m2=mean(y2),y.m3=mean(y3),y.m4=mean(y4))
## y.m1 y.m2 y.m3 y.m4
## 7.500909 7.500909 7.500000 7.500909
```


Rregression Diagnostics: Is the CEF linear?

```
c(x.sd1=sd(x1),x.sd2=sd(x2),x.sd3=sd(x3),x.sd3=sd(x4))
## x.sd1 x.sd2 x.sd3 x.sd3
## 3.316625 3.316625 3.316625 3.316625
c(y.sd1=sd(y1),y.sd2=sd(y2),y.sd4=sd(y3),y.sd4=sd(y4))
## y.sd1 y.sd2 y.sd4 y.sd4
## 2.031568 2.031657 2.030424 2.030579
c(\operatorname{cor}1=\operatorname{cor}(x1,y1),\operatorname{cor}2=\operatorname{cor}(x2,y2),\operatorname{cor}3=\operatorname{cor}(x3,y3),\operatorname{cor}4=\operatorname{cor}(x4,y4))
\begin{tabular}{lrrrr} 
\#\# & cor1 & cor2 & \(\operatorname{cor} 3\) & \(\operatorname{cor} 4\) \\
\#\# & 0.8164205 & 0.8162365 & 0.8162867 & 0.8165214
\end{tabular}
```


Rregression Diagnostics: Is the CEF linear?

...but vary considerably when graphed:

(C) Jiaming Mao

Rregression Diagnostics: Is the CEF linear?

Linear regression on each dataset:

(C) Jiaming Mao

Rregression Diagnostics: Is the CEF linear?

The regression lines and R^{2} values are the same...

```
areg <- list(areg1=lm(y1~x1),areg2=lm(y2~x2),areg3=lm(y3~x3),areg4=lm(y4~x4
attach(areg)
cbind(areg1$coef, areg2$coef, areg3$coef, areg4$coef)
\begin{tabular}{lrrrr} 
\#\# & {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} \\
\#\# (Intercept) & 3.0000909 & 3.000909 & 3.0024545 & 3.0017273 \\
\#\# x1 & 0.5000909 & 0.500000 & 0.4997273 & 0.4999091
\end{tabular}
s <- lapply(areg,summary)
c(s$areg1$r.sq,s$areg2$r.sq,s$areg3$r.sq,s$areg4$r.sq)
## [1] 0.6665425 0.6662420 0.6663240}00.666707
```


Rregression Diagnostics: Is the CEF linear?

...but residual plots show the differences:

Rregression Diagnostics: Nonrandom Sampling

(C) Jiaming Mao

Rregression Diagnostics: Heteroskedasticity

(C) Jiaming Mao

Rregression Diagnostics: Collinearity

Left: two variables are not collinear; Right: there is high collinearity.

Rregression Diagnostics: Collinearity

Contour plots for the RSS as a function of parameters β.
Left: regression on two variables that are not collinear; Right: regression on two variables that are highly collinear. Because of the collinearity, there are many pairs of β with a similar value for the RSS.

Rregression Diagnostics: Collinearity

From (9), we can see that:

- If X_{1}, \ldots, X_{p} are orthogonal, then $\widehat{\beta}_{j}$ is equal to the simple linear regression coefficient of y on X_{j}.
- If X_{1}, \ldots, X_{p} are correlated - in particular - if X_{j} is highly correlated with the other predictors, then \widehat{u}_{j} will be close to 0 . This makes $\widehat{\beta}_{j}$ unstable, as both the denominator and the numerator are small.

From (13), we can see that:

- If X_{j} is highly correlated with the other predictors, the variance of $\widehat{\beta}_{j}$ is inflated, making it less likely to be significant.

Rregression Diagnostics: Collinearity

- A simple way to detect collinearity is to look at the correlation matrix of the predictors.
- However, it is possible for collinearity to exist between three or more variables even if no pair of variables has a particularly high correlation. This is called multicollinearity.
- Variance inflation factor (VIF):

$$
\operatorname{VIF}\left(\widehat{\beta}_{j}\right)=\frac{1}{1-R_{X_{j} \mid X_{-j}}^{2}}
$$

, where $R_{X_{j} \mid X_{-j}}^{2}$ is the R^{2} from a regression of X_{j} onto all of the other predictors.

- VIF \geq 1. Large VIF indicates a problematic amount of collinearity.

Rregression Diagnostics: Collinearity

- When faced with the problem of collinearity, a simple solution is to drop one of the problematic variables.
- Suppose two variables both contribute in explaining y, but are highly correlated with each other.
- Both will be insignificant if both are included in the regression model.
- Dropping one will likely make the other significant.
- This is why we can't remove two (or more) supposedly insignificant predictors at a time: significance depends on what other predictors are in the model!

Maximum Likeliood Estimation

- While least squares regression learns a deterministic function $f(x)$ that directly maps each x into a prediction of y, an alternative approach is to learn the conditional distribution $p(y \mid x)$ and use the estimated $p(y \mid x)$ to form a prediction of y.
- To do so, let $\mathcal{H}=\left\{q_{\theta}(y \mid x): \theta \in \Theta\right\}$, where the hypotheses $q_{\theta}(y \mid x)$ are conditional distributions parametrized by $\theta \in \Theta$.
- We select a $q_{\theta}(y \mid x) \in \mathcal{H}$, or equivalently, a $\theta \in \Theta$, by minimizing the empirical KL divergence, or equivalently, by maximizing the (log) likelihood function.

Maximum Likeliood Estimation

The log likelihood function ${ }^{20}$:

$$
\log \mathcal{L}(\theta)=\sum_{i=1}^{N} \log q_{\theta}\left(y_{i} \mid x_{i}\right)
$$

The maximum likelihood estimator chooses

$$
\widehat{\theta}=\arg \max _{\theta \in \Theta} \log \mathcal{L}(\theta)
$$

${ }^{20}$ Also written as $\log \mathcal{L}(\theta \mid \mathcal{D})$ to emphasize its dependence on sample \mathcal{D}.

Normal Linear Model

The normal linear regression model is $\mathcal{H}=\left\{q_{\theta}(y \mid x)\right\}$, where

$$
\begin{equation*}
q_{\theta}(y \mid x)=\mathcal{N}\left(x^{\prime} \beta, \sigma^{2}\right) \tag{18}
\end{equation*}
$$

, where $\theta=(\beta, \sigma)$.
This is equivalent to assuming ${ }^{21}$:

$$
\begin{equation*}
y=x^{\prime} \beta+e, e \sim \mathcal{N}\left(0, \sigma^{2}\right) \tag{19}
\end{equation*}
$$

[^11]
Normal Linear Model

Given sample \mathcal{D} and model (18),

$$
\begin{align*}
\log \mathcal{L} & =\sum_{i=1}^{N} \log \left\{\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}\left(y_{i}-x_{i}^{\prime} \beta\right)^{2}\right)\right\} \tag{20}\\
& =-\frac{N}{2} \log (2 \pi)-N \log \sigma-\frac{1}{2 \sigma^{2}} \underbrace{\sum_{i=1}^{N}\left(y_{i}-x_{i}^{\prime} \beta\right)^{2}}_{\mathrm{RSS}}
\end{align*}
$$

Normal Linear Model

Maximizing (20) with respect to β and $\sigma \Rightarrow$

$$
\begin{aligned}
& \frac{\partial \log \mathcal{L}}{\partial \beta}=0 \Rightarrow \widehat{\beta}=\left[\sum_{i=1}^{N} x_{i} x_{i}^{\prime}\right]^{-1} \sum_{i=1}^{N} x_{i} y_{i}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y \\
& \frac{\partial \log \mathcal{L}}{\partial \sigma}=0 \Rightarrow \widehat{\sigma}=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-x_{i}^{\prime} \widehat{\beta}\right)^{2}}
\end{aligned}
$$

Thus, maximum likelihood estimation of the normal linear model produces the same estimate of β as least squares regression.

Normal Linear Model

Let's fit the normal linear model (18) on the data we generated on pare 20:

```
# Define the negative log likelihood function
nll <- function(theta){
    beta0 <- theta[1]
    beta1 <- theta[2]
    beta2 <- theta[3]
    sigma <- theta[4]
    N <- length(y)
    z <- (y - beta0 - beta1*x1 - beta2*x2)/sigma
    logL <- -1*N*log(sigma) - 0.5*sum(z^2)
    return(-logL)}
# Minimize the negative likelihood function
mlefit <- optim(c(0,0,0,1),nll) # initial value for theta: (0,0,0,1)
mlefit$par # parameter estimate
## [1] 1.010153 -2.591790 5.062709 1.004935
```


Normal Linear Model

```
# Alternatively,
require(bbmle)
parnames(nll) <- c("beta0","beta1","beta2", "sigma")
result <- mle2(nll,start=c(beta0=0,beta1=0,beta2=0,sigma=1))
coeftest(result)
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr}(>|z|
## beta0 1.010134 0.118487 8.5253<2.2e-16 ***
## beta1 -2.591654 0.224609 -11.5385 < 2.2e-16 ***
## beta2 5.062493 0.311189 16.2682 < 2.2e-16 ***
## sigma 1.004913 0.031778 31.6227<2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Normal Linear Model

Likelihood profile: beta0

Likelihood profile: beta2
$\underline{\underline{N}}$

Likelihood profile: beta1

Likelihood profile: sigma
층

Moving Beyond Linearity

- The CEF $f(x)=\mathbb{E}(y \mid x)$ is seldom linear. The least squares linear regression model, however, doesn't have to be linear in x either. We can move beyond linearity in inputs x as long as we retain linearity in parameters β^{22}.
- Polynomial regression is a standard way to extend linear regression to settings in which the relationship between x and y is nonlinear.

[^12]
Polynomial Regression

(C) Jiaming Mao

Polynomial Regression

Wage Profile

Data: income survey for men in central Atlantic region of USA

```
require(AER)
require(ISLR) # contains the data set 'Wage'
fit <- lm(wage ~ poly(age,4,raw=T), data=Wage) # degree-4 polynomial
coeftest(fit)
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.8415e+02 6.0040e+01 -3.0672 0.0021803 **
## poly(age, 4, raw = T)1 2.1246e+01 5.8867e+00 3.6090 0.0003124 ***
## poly(age, 4, raw = T)2 -5.6386e-01 2.0611e-01 -2.7357 0.0062606 **
## poly(age, 4, raw = T)3 6.8107e-03 3.0659e-03 2.2214 0.0263978 *
## poly(age, 4, raw = T)4 -3.2038e-05 1.6414e-05 -1.9519 0.0510386.
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Wage Profile

Degree-4 Polynomial

(C) Jiaming Mao

Piecewise Constant Regression

- For the following analysis, consider modeling the relationship between y and a single input variable x.
- So far we have imposed a global D structure on the relationship between x and y.
- Piecewise regression breaks the input space into distinct regions and fit a different relationship in each region.

Piecewise Constant Regression

How it works:

1. Divide the range of x into M regions by creating $M-1$ cutpoints, or knots, $\xi_{1}, \ldots, \xi_{M-1}$. Then construct the following dummy variables:

Region	$\phi(x)$
R_{1}	$\phi_{1}(x)=\mathcal{I}\left(x<\xi_{1}\right)$
R_{2}	$\phi_{2}(x)=\mathcal{I}\left(\xi_{1} \leq x<\xi_{2}\right)$
\vdots	\vdots
R_{M}	$\phi_{M}(x)=\mathcal{I}\left(\xi_{M-1} \leq x\right)$

Piecewise Constant Regression

How it works:
2. Fit the following model:

$$
\begin{equation*}
y=\beta_{1} \phi_{1}(x)+\beta_{2} \phi_{2}(x)+\cdots+\beta_{M} \phi_{M}(x)+e \tag{21}
\end{equation*}
$$

$\sum_{m=1}^{M} \beta_{m} \phi_{m}(x)$ is a step function or piecewise constant function, and (21) is called a piecewise constant regression model.

Piecewise Constant Regression

Solving (21) by least squares \Rightarrow

$$
\widehat{\beta}_{m}=\bar{y}_{m}
$$

, where $\bar{y}_{m} \equiv \frac{1}{n_{m}} \sum_{x_{i} \in R_{m}} y_{i}{ }^{23}$.
i.e., for every $x \in R_{m}$, we make the same prediction, which is simply the mean of the response values for the training observations in R_{m}.

[^13]
Wage Profile

```
# cut(x,M) divides }x\mathrm{ into M pieces of equal length
# and generates the corresponding dummy variables
fit <- lm(wage ~ 0 + cut(age,4), data=Wage) # no intercept
coeftest(fit)
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr}(>|t|
## cut(age, 4)(17.9,33.5] 94.1584 1.4761 63.790<2.2e-16 ***
## cut(age, 4)(33.5,49] 118.2119 1.0808 109.379 < 2.2e-16 ***
## cut(age, 4)(49,64.5] 117.8230 1.4483 81.351<2.2e-16 ***
## cut(age, 4)(64.5,80.1] 101.7990 4.7640 21.368< 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Wage Profile

Piecewise Constant

(C) Jiaming Mao

Basis Functions

In general, $\phi(x)$ are called basis functions and do not have to be dummy variables. They can be any functions of x.

A linear basis function model is defined $a s^{24}$:

$$
\begin{equation*}
y=\beta_{1} \phi_{1}(x)+\beta_{2} \phi_{2}(x)+\cdots+\beta_{M} \phi_{M}(x)+e=\beta^{\prime} \Phi(x)+e \tag{22}
\end{equation*}
$$

, where $\beta=\left(\beta_{1}, \ldots, \beta_{M}\right)^{\prime}$ and $\Phi=\left(\phi_{1}, \ldots, \phi_{M}\right)^{\prime}$.
Solving (22) by least squares \Rightarrow

$$
\widehat{\beta}=\left(\Phi^{\prime} \Phi\right)^{-1} \Phi^{\prime} Y
$$

, where $\Phi=\Phi(X)$.

[^14]
Regression Splines

- Polynomial and piecewise constant regression models are special cases of linear basis function models ${ }^{25}$.
- We can also do piecewise polynomial regression, which involves fitting different polynomials over different regions of x.

[^15]
Regression Splines

Piecewise Constant

Piecewise Linear

Regression Splines

Oftentimes it is desired that the fitted curve is continuous over the range of x, i.e., there should be no jump at the knots.

For piecewise linear regression with one knot (ξ), this means:

$$
y= \begin{cases}\alpha_{10}+\alpha_{11} x+e & x<\xi \tag{23}\\ \alpha_{20}+\alpha_{21}(x-\xi)+e & x \geq \xi\end{cases}
$$

under the constraint that

$$
\begin{equation*}
\alpha_{10}+\alpha_{11} \xi=\alpha_{20} \tag{24}
\end{equation*}
$$

Regression Splines

(23) and (24) \Rightarrow the continuous piecewise linear model can be parametrized as

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x+\beta_{2}(x-\xi)_{+}+e \tag{25}
\end{equation*}
$$

, where $\beta_{0}=\alpha_{10}, \beta_{1}=\alpha_{11}, \beta_{2}=\alpha_{21}-\alpha_{11}$, and $(x-\xi)_{+} \equiv(x-\xi) \mathcal{I}(x \geq \xi)$.

Regression Splines

Continuous Piecewise Linear

Piecewise-linear Basis Function

Regression Splines

For higher-order piecewise polynomial regression, in addition to the fitted curve being continuous, we may also want it to be smooth by requiring the derivatives of the piecewise polynomials to be also continuous at the knots.

For piecewise cubic polynomial regression with one $\operatorname{knot}(\xi)$, this means:

$$
y= \begin{cases}\alpha_{10}+\alpha_{11} x+\alpha_{12} x^{2}+\alpha_{13} x^{3}+e & x<\xi \tag{26}\\ \alpha_{20}+\alpha_{21}(x-\xi)+\alpha_{22}(x-\xi)^{2}+\alpha_{23}(x-\xi)^{3}+e & x \geq \xi\end{cases}
$$

subject to the constraints that the piecewise polynomials as well as their $1^{\text {st }}$ and $2^{\text {nd }}$ derivatives are continuous at ξ :

$$
\begin{align*}
\alpha_{10}+\alpha_{11} \xi+\alpha_{12} \xi^{2}+\alpha_{13} \xi^{3} & =\alpha_{20} \tag{27}\\
\alpha_{11}+2 \alpha_{12} \xi+3 \alpha_{13} \xi^{2} & =\alpha_{21} \\
\alpha_{12}+3 \alpha_{13} \xi & =\alpha_{22}
\end{align*}
$$

Regression Splines

(26) and (27) \Rightarrow

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+\beta_{4}(x-\xi)_{+}^{3}+e \tag{28}
\end{equation*}
$$

, where $\beta_{0}=\alpha_{10}, \beta_{1}=\alpha_{11}, \beta_{2}=\alpha_{12}, \beta_{3}=\alpha_{13}$, and $\beta_{4}=\alpha_{23}-\alpha_{13}$.

Regression Splines

(25) and (28) are examples of regression splines. (25) is called a linear spline and (28) is called a cubic spline.

Regression Spline

A degree-d spline is a piecewise degree-d polynomial, with continuity in derivatives up to degree $d-1$ at each knot.

- In general, a degree $-d$ spline with $M-1$ knots has $d+M$ degrees of freedom ${ }^{26}$.

[^16]Jiaming Mao

Natural Splines

- Splines tend to have high variance at the boundary $\left(x<\xi_{1}\right.$ or $x \geq \xi_{M-1}$, where $M-1$ is the total number of knots).
- A natural spline is a regression spline with additional boundary constraints: the function is required to be linear beyond the boundary knots, in order to produce more stable estimates.

Wage Profile

```
require(splines)
# Cubic Spline
# ------------
# bs() generates B-spline basis functions with specified degrees
# of polynomials and knots. Here, knots at age 25,40,60
fit.cs <- lm(wage ~ bs(age,knots=c(25,40,60), degree=3), data=Wage)
# Natural Cubic Spline
# --------------------
# ns() fits a natural cubic spline
fit.ncs <- lm(wage ~ ns(age,knots=c(25,40,60)))
```


Wage Profile

```
coeftest(fit.cs)
##
## t test of coefficients:
##
##
## (Intercept) 60.4937 9.4604 6.3944
## bs(age, knots = c(25, 40, 60), degree = 3)1 3.9805 12.5376 0.3175
## bs(age, knots = c(25, 40, 60), degree = 3)2 44.6310 10.6263 4.6364
## bs(age, knots = c(25, 40, 60), degree = 3)3 62.8388 10.7552 5.8426
## bs(age, knots = c(25, 40, 60), degree = 3)4 55.9908 10.7063 5.2297
## bs(age, knots = c(25, 40, 60), degree = 3)5 50.6881 14.4018 3.5196
## bs(age, knots = c(25, 40, 60), degree = 3)6 16.6061 19.1264 0.8682
## Pr(>|t|)
## (Intercept) 1.863e-10 ***
## bs(age, knots = c(25, 40, 60), degree = 3)1 0.7508987
## bs(age, knots = c(25, 40, 60), degree = 3)2 3.698e-06 ***
## bs(age, knots = c(25, 40, 60), degree = 3)3 5.691e-09 ***
## bs(age, knots =c(25, 40, 60), degree = 3)4 1.815e-07 ***
## bs(age, knots = c(25, 40, 60), degree = 3)5 0.0004387 ***
## bs(age, knots = c(25, 40, 60), degree = 3)6 0.3853380

\section*{Wage Profile}
```

coeftest(fit.ncs)

t test of coefficients:

Estimate Std. Error t value Pr}(>|t|

(Intercept) 54.7595 5.1378 10.6581 < 2.2e-16

ns(age, knots = c(25, 40, 60))1 67.4019 5.0134 13.4442 < 2.2e-16

ns(age, knots = c(25, 40, 60))2 51.3828 5.7115 8.9964 < 2.2e-16

ns(age, knots = c(25, 40, 60))3 88.5661 12.0156 7.3709 2.181e-13

ns(age, knots = c(25, 40, 60))4 10.6369 9.8332 1.0817 0.2795

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```

\section*{Wage Profile}

\section*{Cubic and Natural Cubic Spline}


\section*{Generalized Additive Models}

So far we have been dealing with a single input \(x\) in our discussion of polynomial regression and regression splines. A natural way to extend this discussion to multiple inputs is to assume the following model:
\[
\begin{equation*}
y=\omega_{0}+\omega_{1}\left(x_{1}\right)+\omega_{2}\left(x_{2}\right)+\cdots \omega_{p}\left(x_{p}\right)+e \tag{29}
\end{equation*}
\]
, where
\[
\omega_{j}\left(x_{j}\right)=\sum_{m=1}^{M_{j}} \beta_{j m} \phi_{j m}\left(x_{j}\right)
\]
(29) is called a generalized additive model (GAM).

\section*{Generalized Additive Models}

The GAM allows for flexible nonlinear relationships in each dimension of the input space while maintaining the additive structure of linear models.
- For example, we can fit a linear relationship in \(x_{1}\), a polynomial in \(x_{2}\), a cubic spline in \(x_{3}\), etc.
- The GAM remains a linear basis function model and therefore can be fit by least squares \({ }^{27}\).
\({ }^{27}(29)\) is equivalent to
\[
y=\beta^{\prime} \Phi(x)+e
\]
, where \(\Phi=\left(\mathbf{1}, \phi_{11}, \ldots, \phi_{1 M_{1}}, \ldots, \phi_{p 1}, \ldots, \phi_{\rho M_{p}}\right)^{\prime}\).

\section*{Wage Profile}
```

fit <- lm(wage ~ poly(year,2) + ns(age,knots=c(25,40,60)) + education)
coeftest(fit)

t test of coefficients:

Estimate Std. Error t value Pr}\operatorname{Pr}(>|t|

(Intercept) 47.5751 4.8992 9.7108 < 2.2e-16

poly(year, 2)1 130.4942 35.2930 3.6974 0.0002217

poly(year, 2)2 -36.3005 35.2579 -1.0296 0.3032959

ns(age, knots =c(25, 40, 60))1 51.1072 4.4572 11.4662 < 2.2e-16

ns(age, knots = c(25, 40, 60))2 33.1989 5.0767 6.5394 7.237e-11

ns (age, knots = c(25, 40, 60))3 53.5004 10.6621 5.0178 5.532e-07

ns(age, knots = c(25, 40, 60))4

education2. HS Grad 10.8174

education3. Some College

education4. College Grad

education5. Advanced Degree

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 (C) Jiaming Mao
    ```

\section*{Wage Profile}


A GAM model of wage with a quadratic polynomial in year, a natural cubic spline in age, and a step function in education

\section*{Generalization Issues}

Fitting a linear basis function model (22) can be thought of as a two-step process:
(1) Transform \(x\) into \(\Phi(x)^{28}\).
- Let \(z=\Phi(x) \in \mathcal{Z} . \Phi: \mathcal{X} \rightarrow \mathcal{Z}\) is called a feature transform.
(2) Fit the linear model: \(\mathcal{H}_{\Phi}=\left\{h: h(z)=\beta^{\prime} z\right\}\), where \(\mathcal{H}_{\Phi}\) denotes the hypothesis set corresponding to the feature transform \(\Phi\).

\footnotetext{
\({ }^{28} x\) can be multi-dimensional: \(x=\left(x_{1}, \ldots, x_{p}\right)\)
}

\section*{Feature Transform}


Left: data in \(\mathcal{X}\)-space; Right: data in \(\mathcal{Z}\)-space

\section*{Generalization Issues}

If we decide on the feature transform \(\Phi\) before seeing the data, then the VC generalization bound holds with \(d_{V C}\left(\mathcal{H}_{\Phi}\right)\) as the VC dimension.
I.e., for any \(g \in \mathcal{H}_{\Phi}\), with probability at least \(1-\delta\),
\[
\begin{align*}
E_{\text {out }}(g) & \leq E_{\text {in }}(g)+\sqrt{\frac{8}{N} \ln \frac{4\left((2 N)^{d v c}+1\right)}{\delta}}  \tag{30}\\
& =E_{\text {in }}(g)+\mathcal{O}\left(\sqrt{\frac{d_{V C}}{N} \ln N}\right)
\end{align*}
\]
, where \(d_{V C}=d_{V C}\left(\mathcal{H}_{\Phi}\right)\).

\section*{Generalization Issues}

Therefore, when choosing a high-order polynomial, or a spline with many degrees of freedom, or a GAM with complex nonlinearities in many dimensions, we cannot avoid the approximation-generalization tradeoff:
- More complex \(\mathcal{H}_{\Phi}\left(d_{V C}\left(\mathcal{H}_{\Phi}\right) \uparrow\right) \Rightarrow E_{i n} \downarrow\)
- Less complex \(\mathcal{H}_{\Phi}\left(d_{V C}\left(\mathcal{H}_{\Phi}\right) \downarrow\right) \Rightarrow\left|E_{\text {out }}-E_{\text {in }}\right| \downarrow\)

\section*{Generalization Issues}

What if we try a transformation \(\Phi_{1}\) first, and then, finding the results unsatisfactory, decide to use \(\Phi_{2}\) ? Then we are effectively using a model that contains both \(\left\{\beta^{\prime} \Phi_{1}(x)\right\}\) and \(\left\{\beta^{\prime} \Phi_{2}(x)\right\}\).
- For example, if we try a linear model first, then a quadratic polynomial, then a piecewise constant model, before settling on a cubic spline, then \(d_{V C}\) in (30) should be the VC dimension of a hypothesis set that contains not only the cubic spline model, but all of the aforementioned models.
- The process of trying a series of models until we get a satisfactory result is called specification search or data snooping. In general, the more models you try, the poorer your final result will generalize out of sample.

\section*{Appendix: Frisch-Waugh-Lovell Theorem}

\section*{Proof.}

Define \(\mathbb{M} \doteq \mathbb{I}-\mathbb{H}=\mathbb{I}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\). Then for any \(Y\), we can write
\[
Y=X \widehat{\beta}+\widehat{e}=\mathbb{H} Y+\mathbb{M} Y
\]
, where \(\hat{e}=Y-X\left(X^{\prime} X\right)^{-1} X^{\prime} Y=(\mathbb{I}-\mathbb{H}) Y=\mathbb{M} Y\) is orthogonal to \(X\).
Now consider the model
\[
Y=X_{1} \beta_{1}+X_{2} \beta_{2}+e
\]

OLS estimation \(\Rightarrow\)
\[
Y=X_{1} \widehat{\beta}+X_{2} \widehat{\beta}+\widehat{e}
\]

\section*{Appendix: Frisch-Waugh-Lovell Theorem}

\section*{Proof. (cont.)}

Define \(\mathbb{M}_{X_{2}} \doteq \mathbb{I}-X_{2}\left(X_{2}^{\prime} X_{2}\right)^{-1} X_{2}^{\prime}\). Then
\[
\begin{align*}
\mathbb{M}_{X_{2}} Y & =\mathbb{M}_{X_{2}} X_{1} \widehat{\beta}_{1}+\mathbb{M}_{X_{2}} X_{2} \widehat{\beta}_{2}+\mathbb{M}_{X_{2}} \widehat{e} \\
& \stackrel{[1]}{=} \mathbb{M}_{X_{2}} X_{1} \widehat{\beta}_{1}+\widehat{e} \tag{31}
\end{align*}
\]
, where [1] follows since \(\mathbb{M}_{X_{2}} X_{2}=0\) and \(\mathbb{M}_{X_{2}} \widehat{e}=\widehat{e}\) because \(\widehat{e} \perp X_{2}\).
Finally, notice that because \(\widehat{e} \perp X_{1}\), we also have \(\widehat{e} \perp \mathbb{M}_{X_{2}} X_{1}\). Hence (31) represents an orthogonal projection of \(\mathbb{M}_{X_{2}} Y\) on \(\mathcal{R}\left(\mathbb{M}_{X_{2}} X_{1}\right)\). Therefore, OLS regression of \(\mathbb{M}_{X_{2}} Y\) on \(\mathbb{M}_{X_{2}} X_{1}\) will produce the same \(\beta_{1}\) as in (31).

\section*{Appendix: Gradient Descent}

(a) Convex function

(b) Non-convex function

\section*{Gradient descent paths with different starting points}

\section*{Acknowledgement I}

Part of this lecture is based on the following sources:
- Gramacy, R. B. Applied Regression Analysis. Lecture at the University of Chicago Booth School of Business, retrieved on 2017.01.01. [link]
- Hastie, T., R. Tibshirani, and J. Friedmand. 2008. The Elements of Statistical Learning (2nd ed.). Springer.
- James, G., D. Witten, T. Hastie, and R. Tibshirani. 2013. An Introduction to Statistical Learning: with Applications in R. Springer.
- Penn State University. Probability Theory and Mathematical Statistics. Online course, retrieved on 2017.01.01. [link]
- Schmidt, M. Machine Learning. Lecture at the University of British Columbia, retrieved on 2021.01.01. [link]
- Shalizi, C. R. 2019. Advanced Data Analysis from an Elementary Point of View. Manuscript.

\section*{Acknowledgement II}
- Taddy, M. Big Data. Lecture at the University of Chicago Booth School of Business, retrieved on 2017.01.01. [link]
- Tibshirani, R. Convex Optimization. Lecture at Carnegie Mellon University, retrieved on 2021.01.01. [link]```


[^0]:    ${ }^{1}$ Note on terminology: linear regression can refer broadly to the use of any linear models for regression purposes. Historically, however, it refers more narrowly to least squares linear regression, i.e., linear regression by minimizing in-sample MSE.
    ${ }^{2}$ The conditional expectation function (CEF), $\mathbb{E}[y \mid x]$, is also known as the regression function.
    ${ }^{3}$ Since each $h(x)$ is associated with a unique $\beta, h(x)$ is said to be parametrized by $\beta$. In this case, choosing a hypothesis $h$ is equivalent to choosing a parameter $\beta$.

[^1]:    ${ }^{4} p$ is the dimension of the input space.

[^2]:    ${ }^{5}$ in the sense of minimizing the L2 loss function.

[^3]:    ${ }^{10}$ In fact, step 1 is not necessary. It is easy to prove an alternative version of the Frisch-Waugh-Lovell theorem:

    $$
    \widehat{\beta}_{j}=\frac{\sum_{i=1}^{N} \widehat{u}_{i j} y_{i}}{\sum_{i=1}^{N} \widehat{u}_{i j}^{2}}=\left(\widehat{u}_{j}^{\prime} \widehat{u}_{j}\right)^{-1} \widehat{u}_{j}^{\prime} y
    $$

[^4]:    ${ }^{11}$ See Appendix for a comparison of convex and non-convex functions.

[^5]:    ${ }^{12}$ It is worth emphasizing that (15) is only valid in large samples, since it is based on the asymptotic distribution of $t_{j}$. Any $p$-values calculated using (15) on small samples should not be trusted. In general, hypothesis tests based on the asymptotic properties of test statistics are only valid for large samples.

[^6]:    ${ }^{14}$ We also have the Munchausen number - a number that is equal to the sum of each digit raised to the power of itself. E.g., $3435=3^{3}+4^{4}+3^{3}+5^{5}$.

[^7]:    ${ }^{15}$ For an illustration, see page 43-45.

[^8]:    ${ }^{16}$ This is because $\widehat{\beta}$ is estimated on a sample of size $N$. To quantify its uncertainty, we need to generate many samples of the same size.

[^9]:    ${ }^{17}$ Suppose $y$ grows at a rate $i$. If $i$ is continuously compounded, then $y_{t}=y_{0} \lim _{n \rightarrow \infty}\left(1+\frac{i}{n}\right)^{n t}=y_{0} e^{i t} \Rightarrow \log \left(y_{t}\right)=\log \left(y_{0}\right)+i \times t$. If $i$ is not continuously compounded, then $y_{t}=y_{0}(1+i)^{t} \Rightarrow \log \left(y_{t}\right)=\log \left(y_{0}\right)+t \log (1+i) \approx \log \left(y_{0}\right)+i \times t$.

[^10]:    ${ }^{19}$ What economic assumptions need to be satisfied in order for the coefficients to be interpreted as price elasticities of demand?

[^11]:    ${ }^{21}$ Notice the strong assumptions imposed by (18) and (19). In addition to assuming a linear regression function, we are now assuming that (1) at each $x$, the scatter of $y$ around the regression function is normally distributed (Gaussianity); (2) the variance of this scatter is constant (homoskedasticity); and (3) there is no dependence between this scatter and anything else (error independence).

[^12]:    ${ }^{22}$ We have already seen examples of including nonlinear terms in $x$ such as $\log (x)$ and interaction effects ( $x_{1} x_{2}$ ) in the regression model.

[^13]:    ${ }^{23} n_{m}$ is the number of observations in $R_{m}$.

[^14]:    ${ }^{24}$ Notice that (22) is the same as (21), except now $\phi(x)$ can be any function of $x$.

[^15]:    ${ }^{25}$ For example, for $K$-degree polynomial regressions, $\phi_{1}(x)=1, \phi_{2}(x)=x, \phi_{3}(x)=x^{2}, \ldots, \phi_{K}(x)=x^{K}$.

[^16]:    ${ }^{26}$ For example, a linear spline has $1+M$ degrees of freedom (see (25)). A cubic spline has $3+M$ degrees of freedom (see (28)). In comparison, a degree-d polynomial has $d+1$ degrees of freedom.

