Regression

Jiaming Mao Xiamen University

Copyright © 2017–2021, by Jiaming Mao This version: Fall 2021 Contact: jmao@xmu.edu.cn Course homepage: jiamingmao.github.io/data-analysis

All materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International License.

The linear regression model¹ is a discriminative model with $f(x) = \mathbb{E}[y|x]^2$ as the target function and $\mathcal{H} = \{h(x)\}$ consisting of linear functions³:

$$h(x) = x'\beta$$

, where $x = (1, x_1, \dots, x_p)'$ and $\beta = (\beta_0, \beta_1, \dots, \beta_p)'$.

The goal is to find $g \in \mathcal{H}$ that best approximates f.

¹Note on terminology: linear regression can refer broadly to the use of any linear models for regression purposes. Historically, however, it refers more narrowly to least squares linear regression, i.e., linear regression by minimizing in-sample MSE.

²The conditional expectation function (CEF), $\mathbb{E}[y|x]$, is also known as the regression function.

³Since each h(x) is associated with a unique β , h(x) is said to be **parametrized** by β . In this case, choosing a hypothesis h is equivalent to choosing a parameter β .

Error measures:

$$E_{out}(h) = \mathbb{E}\left[(y - h(x))^{2}\right]$$
(1)
$$E_{in}(h) = \frac{1}{N} \sum_{i=1}^{N} (y_{i} - h(x_{i}))^{2}$$
(2)

The VC dimension of a linear model is p + 1⁴. For N ≫ p, the linear model generalizes well from E_{in} to E_{out}.

 $^{^{4}}p$ is the dimension of the input space.

Let

$$\beta^* = \arg\min_{\beta} \mathbb{E}\left[\left(y - x'\beta\right)^2\right]$$
$$= \underbrace{\mathbb{E}\left[xx'\right]^{-1}}_{(p+1)\times(p+1)} \underbrace{\mathbb{E}\left[xy\right]}_{(p+1)\times 1}$$

• β^* is the population regression coefficient.

k

• $x'\beta^*$ is the best⁵ linear predictor of y given x in the underlying population.

(3)

⁵ in the sense of minimizing the L2 loss function.

Recall that the CEF $f(x) = \mathbb{E}[y|x]$ is the best⁵ predictor of y given x in the class of all functions of x.

The function $x'\beta^*$ provides the best⁵ linear approximation to the CEF⁶:

$$eta^* = rgmin_eta \mathbb{E}\left[\left(\mathbb{E}\left[y|x
ight] - x'eta
ight)^2
ight]$$

⁶Generally,

$$\arg\min_{h} \mathbb{E}\left[(y - h(x))^{2}\right] = \arg\min_{h} \mathbb{E}\left[(y - \mathbb{E}[y|x] + \mathbb{E}[y|x] - h(x))^{2}\right]$$
$$= \arg\min_{h} \mathbb{E}\left[(y - \mathbb{E}[y|x])^{2} + (\mathbb{E}[y|x] - h(x))^{2} + 2(y - \mathbb{E}[y|x])(\mathbb{E}[y|x] - h(x))\right]$$
$$= \arg\min_{h} \mathbb{E}\left[(\mathbb{E}[y|x] - h(x))^{2}\right]$$

Let $e^* \equiv y - x'\beta^*$. By construction,

$$\underbrace{\mathbb{E}\left[xe^*\right]}_{(\rho+1)\times 1} = 0 \tag{4}$$

In particular, if x contains a constant term, then $(4) \Rightarrow \mathbb{E}[e^*] = 0$. In this case e^* and x are uncorrelated.

We can separate the constant term and write the linear model as

$$y = \beta_0 + \widetilde{x}'\widetilde{\beta} + e$$

, where $\widetilde{x} = (x_1, \dots, x_p)'$ and $\widetilde{\beta} = (\beta_1, \dots, \beta_p)'$.

Then $(3) \Rightarrow$

$$\widetilde{\beta}^* = \mathbb{V}(\widetilde{x})^{-1} \operatorname{Cov}(\widetilde{x}, y)$$

$$\beta_0^* = \mathbb{E}[y] - \mathbb{E}[\widetilde{x}]' \widetilde{\beta}^*$$
(5)

When p = 1,

$$y = \beta_0 + \beta_1 x + e$$

 $(5) \Rightarrow$

$$\beta_{1}^{*} = \frac{\operatorname{Cov}(x, y)}{\mathbb{V}(x)}$$
$$\beta_{0}^{*} = \mathbb{E}[y] - \beta_{1}^{*}\mathbb{E}[x]$$

The OLS Estimator

Given observed data $\mathcal{D} = \{(x_1, y_1), \dots, (x_N, y_N)\} \sim^{i.i.d.} p(x, y)$, we have, for $i = 1, \dots, N$,

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + e_i \tag{6}$$

, which can be written as

$$Y = X\beta + e \tag{7}$$

, where $Y = [y_1, \ldots, y_N]'$, $e = [e_1, \ldots, e_N]'$, and

$$X = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N1} & \cdots & x_{Np} \end{bmatrix} = \begin{bmatrix} x_1' \\ \vdots \\ x_N' \end{bmatrix}$$

, where $x_i = [1, x_{i1}, ..., x_{ip}]'$.

Minimizing the in-sample error (2) \Rightarrow

$$\widehat{\beta} = \left[\sum_{i=1}^{N} x_i x_i'\right]^{-1} \sum_{i=1}^{N} x_i y_i$$

$$= \left(X'X\right)^{-1} X'Y$$
(8)

 $\widehat{\beta}$ is the least squares regression coefficient – the sample estimate of $\beta^*.$

Consider two *n*-dimensional vectors: $a = (a_1, ..., a_n)$ and $b = (b_1, ..., b_n)$. The **Euclidean distance** between *a* and *b* is:

$$||a - b|| = \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2} = \sqrt{(a - b) \cdot (a - b)}$$

The cosine of the angle between a and b is:

$$\cos\theta = \frac{a \cdot b}{\|a\| \|b\|}$$

, where ||a|| = ||a - 0|| is the length of *a*.

When $a \cdot b = 0$, a and b are **orthogonal**, denoted by $a \perp b$.

The linear space spanned by a, denoted by $\mathcal{R}(a)$, is the collection of points $\beta a = (\beta a_1, \dots, \beta a_n)$ for any real number β .

The **projection** of *b* onto $\mathcal{R}(a)$ is the point b^* in $\mathcal{R}(a)$ that is closest to *b* in terms of Euclidean distance:

$$b^* = \left(rac{oldsymbol{a}\cdotoldsymbol{b}}{\left\|oldsymbol{a}
ight\|^2}
ight)oldsymbol{a}$$

• $(b - b^*) \perp a$

Dimension 1

Euclidean Distance in two Dimensions

The least squares linear regression fit \widehat{Y} is the projection of Y onto the linear space spanned by $\{\mathbf{1}, X_1, \dots, X_p\}^7$.

$${}^{7}X_{j} = (x_{1j}, \ldots, x_{Nj})' \text{ for } j = 1, \ldots, p.$$

• Projection matrix
$$\mathbb{H} = X (X'X)^{-1} X'$$

$$\mathbb{H}Y=\widehat{Y}$$

• \mathbb{H} is also called the **hat matrix**^{8,9}.

•
$$\widehat{e} = Y - X\widehat{\beta} = (\mathbb{I} - \mathbb{H}) Y \perp \mathcal{R}(\mathbf{1}, X_1, \dots, X_p).$$

• $\hat{e} \perp X_j \forall j$.

 $\blacktriangleright \ \widehat{e} \perp \mathbf{1} \Rightarrow \sum_{i} \widehat{e}_{i} = \mathbf{0}.$

⁹The hat matrix has many special properties such as: $\mathbb{H}^2 = \mathbb{H}$, $(\mathbb{I} - \mathbb{H})^2 = (\mathbb{I} - \mathbb{H})$, and trace $(\mathbb{H}) = 1 + p$.

⁸Since it "puts a hat" on Y.

Frisch-Waugh-Lovell Theorem

Given linear model (6), the OLS solution is $\hat{\beta} = (\hat{\beta}_1, \dots, \hat{\beta}_p)$, where

$$\widehat{\beta}_{j} = \frac{\sum_{i=1}^{N} \widehat{u}_{ij} \widehat{\varepsilon}_{ij}}{\sum_{i=1}^{N} \widehat{u}_{ij}^{2}} = \left(\widehat{u}_{j}^{\prime} \widehat{u}_{j}\right)^{-1} \widehat{u}_{j}^{\prime} \widehat{\varepsilon}_{j}$$

$$\tag{9}$$

, where $\hat{u}_j = (\hat{u}_{1j}, \ldots, \hat{u}_{Nj})'$ is the estimated residual from a regression of x_j on x_{-j}^a , and $\hat{\varepsilon}_j = (\hat{\varepsilon}_{1j}, \ldots, \hat{\varepsilon}_{Nj})'$ is the estimated residual from a regression of y on x_{-j} .

Proof

$$x_{-j} = (x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_p).$$

- The Frisch-Waugh-Lovell theorem says that to obtain $\hat{\beta}_i$, we can¹⁰
 - **(**) regress y on all predictors other than x_j to obtain residual $\widehat{\varepsilon}_j$
 - 2 regress x_j on all the other predictors to obtain residual \widehat{u}_j
 - 3 regress $\hat{\varepsilon}_j$ on \hat{u}_j
- $\hat{\beta}_j$ is the slope coefficient on a scatter plot with $\hat{\varepsilon}_j$ on the y-axis and \hat{u}_j on the x-axis.
- The geometric interpretation is that (
 ĉ_j, *û_j*) ⊥ x_{-j} − they are the residuals in (x_j, y) after orthogonalizing away the influence of the other predictors.

$$\widehat{\beta}_{j} = \frac{\sum_{i=1}^{N} \widehat{u}_{ij} y_{i}}{\sum_{i=1}^{N} \widehat{u}_{ij}^{2}} = \left(\widehat{u}_{j}^{\prime} \widehat{u}_{j}\right)^{-1} \widehat{u}_{j}^{\prime} y$$

¹⁰In fact, step 1 is not necessary. It is easy to prove an alternative version of the Frisch-Waugh-Lovell theorem:

Generate some data:

$$\begin{aligned} x_1 &\sim U(0,1) \\ x_2 &= 0.5 x_1 + 0.5 r, \ r \sim U(0,1) \\ y &= 1 - 2.5 x_1 + 5 x_2 + e, \ e \sim \mathcal{N}(0,1) \end{aligned}$$

n <- 500
e <- rnorm(n)
x1 <- runif(n)
x2 <- 0.5*x1 + 0.5*runif(n)
y <- 1 - 2.5*x1 + 5*x2 + e</pre>

```
require(AER)
reg <- lm(y ~ x1 + x2)
coeftest(reg)
##
## t test of coefficients:
##
          Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.01013 0.11884 8.4997 2.233e-16 ***
## x1 -2.59166 0.22529 -11.5039 < 2.2e-16 ***
## x2 5.06250 0.31213 16.2193 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
# to obtain beta1, we first regress y and x1 on x2
u1 <- residuals(lm(x1-x2))
e1 <- residuals(lm(y~x2))</pre>
b1 <- cov(u1,e1)/var(u1)
# to obtain beta2, we first regress y and x^2 on x^1
u2 <- residuals(lm(x2~x1))
e2 <- residuals(lm(v~x1))</pre>
b2 <- cov(u2,e2)/var(u2)
b0 \leq mean(y) - b1 mean(x1) - b2 mean(x2)
cbind(b0, b1, b2)
##
              b0 b1
                                  b2
## [1,] 1.010133 -2.591657 5.062497
```

```
# Alternatively,
b1 <- cov(u1,y)/var(u1)
b2 <- cov(u2,y)/var(u2)
b0 <- mean(y) - b1*mean(x1) - b2*mean(x2)
cbind(b0,b1,b2)
## b0 b1 b2
```

[1,] 1.010133 -2.591657 5.062497

• (8) is the analytical solution to the problem:

$$\min_{\beta} \sum_{i=1}^{N} \left(y_i - x_i' \beta \right)^2 \tag{10}$$

• For many problems, however, such analytical solutions do not exist. How do we solve (10) numerically?

- **Gradient descent** is a method that finds a minimum of a function by figuring out in which direction the function's slope is rising the most steeply, and moving in the opposite direction.
- If the function that we are trying to minimize is differentiable and convex, then it has a unique global minimum¹¹. In this case, gradient descent starting from any point is guaranteed to find the minimum.

¹¹See Appendix for a comparison of convex and non-convex functions.

Let the function that we want to minimize be $f(\theta)$, so that we are looking for

$$heta^* = rgmin_{ heta} f\left(heta
ight)$$

Gradient descent is based on a simple observation: at any point θ , $\nabla f(\theta)$ is a vector pointing in the direction of the greatest increase in f. Hence, to find θ^* , we need to move in the direction of $-\nabla f(\theta)$.

Gradient Descent Algorithm

Start with $\theta^{(0)}$.

repeat

 $\begin{aligned} \theta^{(t)} &:= \theta^{(t-1)} - \eta \cdot \nabla f\left(\theta^{(t-1)}\right) \\ \text{until } \left\|\nabla f\left(\theta^{(t)}\right)\right\| \leq \text{tolerance} \\ \text{return } \theta^{(t)} \end{aligned}$

- We can run gradient descent until the gradient is close to zero. Alternatively, we can run the algorithm for a fixed number of steps.
- η is the step size, also called the learning rate. If it's too large, we
 may easily overshoot the minimum of f. If it's too small, it may take
 too long to get to the minimum. It is common to start with a higher
 learning rate and then slowly decrease it as we approach the minimum.

Small, large, and variable learning rate

For linear regression, the objective function we want to minimize is:

$$f(\beta) = \sum_{i=1}^{N} (y_i - x'_i \beta)^2$$
$$= (Y - X\beta)' (Y - X\beta)$$

 $\nabla f(\beta) = 2(X\beta - Y)'X$

Gradient Descent for Linear Regression

```
# Objective Function #
mse <- function(X,y,beta){</pre>
 N \leftarrow length(y)
 Z <- y - X%*%beta
 mse <- t(Z)%*%Z/N
}
# Gradient Function #
grad <- function(X,y,beta){</pre>
 N \leftarrow length(y)
 grad <- 2*t(X)%*%(X%*%beta-y)/N
}
```

Gradient Descent for Linear Regression

```
# Gradient Descent Function #
# eta: learning rate
# niter: number of iterations
gradientDescent <- function(X,y,beta0,eta,niter){</pre>
 beta <- beta0
 mse_hist <- rep(0,niter) # stores history of mse</pre>
 beta hist <- list(niter) # stores history of beta</pre>
 for (i in 1:niter){
   beta_hist[[i]] <- beta</pre>
   mse hist[i] <- mse(X,y,beta)</pre>
   beta <- beta - eta*grad(X,y,beta) # update beta
 }
 result <- list("beta"=beta, "mse_hist"=mse_hist, "beta_hist"=beta_hist)
 return(result)
```
```
# Simulation 1 #
###################
# generate some data
## note: "true mse" = var(e) = 1
n < -500
e <- rnorm(n)
x \leftarrow runif(n)
y <- 2*x + e
# Gradient Descent
## initial guess: 0; learning rate: 2.5; iteration: 10
X \leftarrow cbind(x) \# make x column vector
result <- gradientDescent(X,y,0,2.5,10)
result$beta
## [,1]
## x 1.977162
```



```
# Simulation 2 #
n < -500
e <- rnorm(n)
x \leftarrow runif(n)
v <- −2 + 4*x + e
# Gradient Descent
## learning rate: 0.05; iteration: 1000
X \leftarrow cbind(rep(1,n),x) \# X matrix
result <- gradientDescent(X,y,c(0,0),0.05,1000)</pre>
result$beta
         [,1]
##
## -2.005872
```

x 3.989831

•
$$\widehat{eta}$$
 is unbiased: $\mathbb{E}\left(\widehat{eta}
ight)=eta^{*}.$

• But how much does
$$\widehat{eta}$$
 vary around eta^* ?

By the central limit theorem,

$$\sqrt{N}\left(\widehat{\beta}-\beta^{*}\right)\longrightarrow^{d}\mathcal{N}\left(0,E\left(xx'\right)^{-1}E\left[xx'\left(e^{*}\right)^{2}\right]E\left(xx'\right)^{-1}\right)$$

•
$$V\left(\widehat{\beta}\right) \doteq \underbrace{N^{-1}E\left(xx'\right)^{-1}E\left[xx'\left(e^*\right)^2\right]E\left(xx'\right)^{-1}}_{(p+1)\times(p+1)}$$
 is the asymptotic variance of $\widehat{\beta}$ conditional on x .

• $V\left(\widehat{\beta}\right)$ quantifies the uncertainty of $\widehat{\beta}$ due to random sampling.

$$\begin{split} \widehat{\mathsf{V}}\left(\widehat{\beta}\right) &= \left[\sum_{i=1}^{N} x_{i} x_{i}'\right]^{-1} \left(\sum_{i=1}^{N} x_{i} x_{i}' \widehat{e}_{i}^{2}\right) \left[\sum_{i=1}^{N} x_{i} x_{i}'\right]^{-1} \\ &= \left(X'X\right)^{-1} \left(X'\Omega X\right) \left(X'X\right)^{-1} \rightarrow^{p} \mathsf{V}\left(\widehat{\beta}\right) \\ \text{, where } \Omega &= \text{diag}\left(\widehat{e}_{1}^{2}, \dots, \widehat{e}_{N}^{2}\right) = \left[\begin{array}{cc} \widehat{e}_{1}^{2} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \widehat{e}_{N}^{2} \end{array}\right]. \end{split}$$

(11)

Homoskedasticity:
$$\mathbb{E}\left[\left(e^{*}\right)^{2} \middle| x\right] = \sigma^{2}$$

Heteroskedasticity: $\mathbb{E}\left[\left(e^{*}\right)^{2} \middle| x\right] = \sigma^{2}(x)$

Under homoskedasticity,

$$\sqrt{N} \left(\widehat{\beta} - \beta^* \right) \longrightarrow^d \mathcal{N} \left(0, E \left(x x' \right)^{-1} \sigma^2 \right)$$
$$\widehat{V} \left(\widehat{\beta} \right) = \left(X' X \right)^{-1} \widehat{\sigma}^2 \tag{12}$$

From (9), we can also derive the homoskedastic asymptotic variance of $\hat{\beta}_j$ – the (j + 1)-th diagonal element of V $(\hat{\beta})$ – as:

For j = 1, ..., p,

$$\sqrt{N} \left(\widehat{\beta}_{j} - \beta_{j}^{*} \right) \longrightarrow^{d} \mathcal{N} \left(0, \frac{\sigma^{2}}{\mathbb{V} \left(u_{j} \right)} \right)$$
$$\widehat{V} \left(\widehat{\beta}_{j} \right) = \frac{\widehat{\sigma}^{2}}{\widehat{u}_{j}^{\prime} \widehat{u}_{j}}$$
(13)

t-statistic

$$t_{j}=rac{\widehat{eta}_{j}-eta_{j}^{*}}{\widehat{\operatorname{se}}\left(\widehat{eta}_{j}
ight)}
ightarrow^{d}\mathcal{N}\left(0,1
ight)$$

, where $\widehat{\mathsf{se}}\left(\widehat{\beta}_{j}\right) = \sqrt{\widehat{\mathsf{V}}\left(\widehat{\beta}_{j}\right)}.$

• 95% confidence interval for β_i^* :

$$\left[\widehat{eta}_{j}-1.96 imes\widehat{ ext{se}}\left(\widehat{eta}_{j}
ight),\widehat{eta}_{j}+1.96 imes\widehat{ ext{se}}\left(\widehat{eta}_{j}
ight)
ight]$$

The interval represents a set estimate of β^{*}_i.

$$\mathbb{H}_0: \beta_j^* = 0 \text{ vs. } \mathbb{H}_1: \beta_j^* \neq 0$$

Under \mathbb{H}_0 ,

$$t_{j} = \frac{\widehat{\beta}_{j}}{\widehat{\mathsf{se}}\left(\widehat{\beta}_{j}\right)} \to^{d} \mathcal{N}\left(0,1\right)$$
(14)

P-value: probability of observing any value more extreme than $|t_j|$ under \mathbb{H}_0 . (14) \Rightarrow in large sample,

$$p - ext{value} pprox 2\left(1 - \Phi\left(|t_j|
ight)
ight)$$
 (15)

, where Φ is the CDF of $\mathcal{N}(0,1)$.

For significance level α , reject \mathbb{H}_0 if $|t_j| > c_{\alpha} = \Phi^{-1} (1 - \alpha/2)$, or equivalently, if p - value $< \alpha^{12}$.

- c_{α} is called the **asymptotic critical value**.
- Common practice: $\alpha = 5\%$ ($c_{.05} \approx 1.96$), $\alpha = 10\%$ ($c_{.10} \approx 1.64$), $\alpha = 1\%$ ($c_{.01} \approx 2.58$).

¹²It is worth emphasizing that (15) is only valid *in large samples*, since it is based on the asymptotic distribution of t_j . Any p-values calculated using (15) on small samples should *not* be trusted. In general, hypothesis tests based on the asymptotic properties of test statistics are only valid for large samples.

Hypothesis Testing Decisions

	$\text{Accept } \mathbb{H}_0$	Reject \mathbb{H}_0
\mathbb{H}_0 true	Correct Decision	Type I Error
\mathbb{H}_1 true	Type II Error	Correct Decision

- α is the size of the test the probability of making a Type I error: Pr (reject $\mathbb{H}_0 | \mathbb{H}_0$ is true).
- The power or sensitivity of a test, is the probability of rejecting ℍ₀ when ℍ₁ is true. Thus (1 power), denoted by β, is the probability of making a Type II error: Pr (fail to reject ℍ₀| ℍ₁ is true).
 - Power ↑ as α ↑, or sample size N ↑, or the true (population) parameter value is further away from its hypothesized value under ℍ₀.

 R^2

$$R^{2} = \frac{\sum_{i=1}^{N} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{N} (y_{i} - \overline{y})^{2}} = 1 - \frac{\sum_{i=1}^{N} \hat{e}_{i}^{2}}{\sum_{i=1}^{N} (y_{i} - \overline{y})^{2}}$$

- measures the amount of variation in y_i accounted for by the model:
 1 = perfect, 0 = perfect misfit.
- cannot go down when you add regressors.
 - Intuition: adding more regressors always allow us to fit the training data more accurately (i.e., reduce E_{in}, but not necessary E_{out})¹³.

¹³Technically, $\hat{\beta}$ is chosen to minimize $\sum_{i} \hat{e}^{2}$. if you add a regressor, you can always set the coefficient of that regressor equal to zero to get the same $\sum_{i} \hat{e}^{2}$. Therefore R^{2} cannot go down.

Robust Standard Errors

(11) is known as heteroskedasticity-consistent (HC) standard error, robust standard error, or White standard error.

Let's generate some data:

$$egin{aligned} &x=U\left(0,100
ight)\ &y=5x+e,\ e\sim\mathcal{N}\left(0,\exp\left(x
ight)
ight) \end{aligned}$$

Robust Standard Errors

```
require(AER)
coeftest(lm(y~x)) # homoskedastic standard error
##
## t test of coefficients:
##
          Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.0116e+41 9.0736e+40 1.1148 0.26519
## x -3.0822e+39 1.5634e+39 -1.9715 0.04895 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coeftest(lm(y~x),vcov=vcovHC) # robust standard error
##
## t test of coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 1.0116e+41 8.6253e+40 1.1728 0.2412
## x -3.0822e+39 2.6314e+39 -1.1713 0.2417
```

The Bootstrap

- The bootstrap is a statistical tool that can be used to quantify the uncertainty associated with a given estimator or statistical method.
 - For example, it can provide an estimate of the standard error of a coefficient.
- The term is believed to derive from "The Surprising Adventures of Baron Munchausen" by Rudolph Erich Raspe¹⁴:

The Baron had fallen to the bottom of a deep lake. Just when it looked like all was lost, he thought to pick himself up by his own bootstraps.

¹⁴We also have the Munchausen number – a number that is equal to the sum of each digit raised to the power of itself. E.g., $3435 = 3^3 + 4^4 + 3^3 + 5^5$.

The Bootstrap

Baron Munchausen pulls himself out of a mire by his own hair (illustration by Oskar Herrfurth)

Münchhaufen

• The idea is simple: suppose we want to estimate the standard error of $\widehat{\beta}$. If we can generate many independent samples from the underlying population, then we can estimate our model on *each* sample, based on which we can compute an estimate of $\mathbb{V}(\widehat{\beta})^{15}$.

¹⁵For an illustration, see page 43 - 45.

The Bootstrap

- In practice, we do not have access to the underlying population and do not know the true p (x, y), but we can treat the empirical distribution as an estimate of the true distribution and draw new samples out of the observed sample itself.
- Each generated bootstrap sample contains the same number of observations as the original observed sample¹⁶. To accomplish this, we repeatedly draw observations from the observed sample with replacement.

¹⁶This is because $\hat{\beta}$ is estimated on a sample of size *N*. To quantify its uncertainty, we need to generate many samples of the same size.

Suppose we observe the following data set: $x = \{0, 0, 0, 1, 1\}$. Then the empirical distribution of x is Pr(x = 0) = 0.6 and Pr(x = 1) = 0.4.

If we believe this is a good approximation of the underlying true distribution of x, then we can generate new samples from this distribution. In practice, this can be accomplished by drawing from $\{0, 0, 0, 1, 1\}$ with replacement.

The Bootstrap

The bootstrap approach on a sample containing 3 observations.

We wish to invest a fixed sum of money in two financial assets that yield returns of X and Y. Suppose our goal is to minimize the total risk, or variance, of our investment. Then the problem is to choose α such that

$$\alpha = \arg\min_{\gamma} \mathbb{V} \left(\gamma X + (1 - \gamma) Y \right)$$
(16)

 $(16) \Rightarrow$

$$\alpha = \frac{\sigma_Y^2 - \sigma_{XY}}{\sigma_X^2 + \sigma_Y^2 - 2\sigma_{XY}} \tag{17}$$

- Given data on (X, Y), we can estimate $\hat{\sigma}_X^2, \hat{\sigma}_Y^2, \hat{\sigma}_{XY}$ and compute $\hat{\alpha}$.
- To estimate the standard error of α̂, we generate R bootstrap samples from the observed data and estimate α R times ⇒

$$\widehat{\alpha} = \frac{1}{R} \sum_{r=1}^{R} \widehat{\alpha}_{r}$$
$$\widehat{se}(\widehat{\alpha}) = \sqrt{\frac{1}{R-1} \sum_{r=1}^{R} (\widehat{\alpha}_{r} - \widehat{\alpha})^{2}}$$


```
# Function to calculate alpha
alpha <- function(data, index){</pre>
  X <- data$X[index]
  Y <- data$Y[index]
  return((var(Y)-cov(X,Y))/(var(X)+var(Y)-2*cov(X,Y)))
}
# 'Portfolio' is a simulated data set containing the returns of X and Y
require(ISLR) # contains 'Portfolio'
n <- nrow(Portfolio)</pre>
bootsample <- sample(n,n,replace=T) # generate one bootstrap sample</pre>
alpha (Portfolio, bootsample) # calculate alpha based on the bootstrap sample
```

[1] 0.6618485

```
# Calculate alpha based on 1000 bootstrap samples
require(boot)
boot(Portfolio,alpha,R=1000)
##
##
  ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = Portfolio, statistic = alpha, R = 1000)
##
##
## Bootstrap Statistics :
       original bias std. error
##
## t1* 0.5758321 0.007540109 0.0895633
```


Histogram of $\widehat{\alpha}$ obtained from bootstrap samples

MPG and Horsepower

MPG and Horsepower

```
require(ISLR) # contains the data set 'Auto'
require(boot)
beta <- function(data,index){</pre>
  coef(lm(mpg~horsepower,data=data,subset=index))
}
boot(Auto, beta, R=1000) # bootstrap std err
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = Auto, statistic = beta, R = 1000)
##
##
## Bootstrap Statistics :
##
         original bias std. error
## t1* 39.9358610 0.0378395594 0.877270914
## t2* -0.1578447 -0.0004406186 0.007475398
```
MPG and Horsepower

```
require(AER)
coeftest(lm(mpg ~ horsepower, data=Auto)) # homoskedastic std err
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 39.9358610 0.7174987 55.660 < 2.2e-16 ***
## horsepower -0.1578447 0.0064455 -24.489 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

coeftest(lm(mpg ~ horsepower, data=Auto),vcov=vcovHC) # robust std err
##
t test of coefficients:
##
Estimate Std. Error t value Pr(>|t|)
(Intercept) 39.9358610 0.8644903 46.196 < 2.2e-16 ***
horsepower -0.1578447 0.0074943 -21.062 < 2.2e-16 ***
--## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>

Log-Linear Regression

When y changes on a multiplicative or percentage scale, it is often appropriate to use $\log(y)$ as the dependent variable¹⁷:

$$y = Ae^{\beta x + e} \Rightarrow \log(y) = \log(A) + \beta x + e$$

e.g.,

$$\log(\mathsf{GDP}) = \alpha + g \times t + e$$

, where t = years, $\alpha = \log$ (base year GDP), and g = annual growth rate.

¹⁷Suppose y grows at a rate i. If i is continuously compounded, then $y_t = y_0 \lim_{n \to \infty} \left(1 + \frac{i}{n}\right)^{nt} = y_0 e^{it} \Rightarrow \log(y_t) = \log(y_0) + i \times t$. If i is not continuously compounded, then $y_t = y_0 (1 + i)^t \Rightarrow \log(y_t) = \log(y_0) + t \log(1 + i) \approx \log(y_0) + i \times t$.

Log-Linear Regression

18

¹⁸Note: in general, $E[f(y)] \neq f(E[y])$. In particular, by the Jensen's inequality, $E[\log(y)] < \log(E[y])$. Therefore, if $E[\log(y)|x] = \alpha + \beta x$, then $E[y|x] > \exp(\alpha + \beta x)$.

If we are willing to assume

$$\log\left(y\right) = \alpha + \beta x + e, \ e \sim \mathcal{N}\left(0, \sigma^{2}\right)$$

, then we have: $E[y|x] = \exp\left(\alpha + \beta x + \frac{1}{2}\sigma^2\right) = \exp\left(E\left[\log\left(y\right)|x\right] + \frac{1}{2}\sigma^2\right).$

Elasticity and Log-Log Regression

In a log-log model:

$$\log\left(y\right) = \beta_0 + \beta_1 \log\left(x\right) + e$$

 β_1 can often be interpreted as an elasticity measure:

$$\beta_1 = \frac{\partial \log (y)}{\partial \log (x)} = \frac{\partial y/y}{\partial x/x} \approx \frac{\% \Delta y}{\% \Delta x}$$

e.g.,

 $\log (sales) = \beta_0 + \beta_1 \log (price) + e$

Three brands: Tropicana, Minute Maid, Dominick's

Data from 83 stores on price, sales (units moved), and whether featured in the store


```
\log(\text{sales}) = \alpha + \beta \log(\text{price}) + e
```

```
require(AER)
oj <- read.csv('oj.csv')</pre>
reg1 <- lm(logmove ~ log(price), data=oj)</pre>
coeftest(reg1)
##
## t test of coefficients:
##
##
               Estimate Std. Error t value Pr(>|t|)
   (Intercept) 10.4234 0.0154 679.0 <2e-16 ***
##
## log(price) -1.6013 0.0184 -87.2 <2e-16 ***
##
   ___
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
log(sales) = \alpha_b + \beta_b log(price) + e, where b denotes brand
```

```
reg2 <- lm(logmove ~ log(price)*brand, data=oj)</pre>
coeftest(reg2)
##
## t test of coefficients:
##
##
                             Estimate Std. Error t value Pr(>|t|)
                              10.9547 0.0207 529.14 <2e-16 ***
## (Intercept)
## log(price)
                              -3.3775 0.0362 -93.32 <2e-16 ***
##
  brandminute.maid
                               0.8883 0.0416 21.38 <2e-16 ***
## brandtropicana
                               0.9624 0.0464 20.72 <2e-16 ***
## log(price):brandminute.maid
                               0.0568 0.0573 0.99
                                                           0.32
## log(price):brandtropicana
                               0.6658 0.0535 12.44
                                                         <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

 $\log(\mathsf{sales}) = (\alpha_{0b} + \mathsf{feature} \times a_{1b}) + (\beta_{0b} + \mathsf{feature} \times \beta_{1b}) \times \log(\mathsf{price}) + e$

```
reg3 <- lm(logmove ~ log(price)*brand*feat, data=oj)
coeftest(reg3)</pre>
```

##						
##	t test of coefficients:					
##						
##		Estimate	Std. Error	t value	Pr(> t)	
##	(Intercept)	10.4066	0.0234	445.67	< 2e-16	***
##	log(price)	-2.7742	0.0388	-71.45	< 2e-16	***
##	brandminute.maid	0.0472	0.0466	1.01	0.31	
##	brandtropicana	0.7079	0.0508	13.94	< 2e-16	***
##	feat	1.0944	0.0381	28.72	< 2e-16	***
##	log(price):brandminute.maid	0.7829	0.0614	12.75	< 2e-16	***
##	log(price):brandtropicana	0.7358	0.0568	12.95	< 2e-16	***
##	log(price):feat	-0.4706	0.0741	-6.35	2.2e-10	***
##	brandminute.maid:feat	1.1729	0.0820	14.31	< 2e-16	***
##	brandtropicana:feat	0.7853	0.0987	7.95	1.9e-15	***
##	<pre>log(price):brandminute.maid:feat</pre>	-1.1092	0.1222	-9.07	< 2e-16	***
##	log(price):brandtropicana:feat	-0.9861	0.1241	-7.95	2.0e-15	***
##						
##	Signif. codes: 0 '***' 0.001 '**	' 0.01 '×	k' 0.05 '.'	0.1 ' '	1	

- Elasticity¹⁹: -1.6
- Brand-specific elasticities:

Dominick's: -3.4, Minute Maid: -3.4, Tropicana: -2.7

• How does featuring a product affect its elasticity?

	Dominick's	Minute Maid	Tropicana
not featured	-2.8	-2.0	-2.0
featured	-3.2	-3.6	-3.5

¹⁹What economic assumptions need to be satisfied in order for the coefficients to be interpreted as price elasticities of demand?

The Capital Asset Pricing Model (CAPM) for asset A relates return $R_{A,t}$ to the market return, $R_{M,t}$:

$$R_{A,t} = \alpha + \beta R_{M,t} + e$$

When asset A is a mutual fund, this CAPM regression can be used as a performance benchmark for fund managers.

```
# 'mfunds.csv' contains data on the historical returns of
# 6 mutual funds as well as the market return
mfund <- read.csv('mfunds.csv')
mu <- apply(mfund,2,mean)
stdev <- apply(mfund,2,sd)</pre>
```

Mutual Funds


```
CAPM <- lm(as.matrix(mfund[,1:6]) ~ mfund$valmrkt)
CAPM
##
## Call:
## lm(formula = as.matrix(mfund[, 1:6]) ~ mfund$valmrkt)
##
## Coefficients:
##
                drefus fidel keystne Putnminc scudinc
  (Intercept) 0.0003462 -0.0029655 -0.0037704 0.0028271 0.000281
##
## mfund$valmrkt 0.9424286 1.1246549 1.5137186 0.3948280 0.609202
##
                windsor
##
  (Intercept) 0.0036469
## mfund$valmrkt 0.9357170
```

Mutual Funds

Look at windsor (which dominates the market):

Does Windsor have an "alpha" over the market?

```
\mathbb{H}_0: \alpha = 0 vs. \mathbb{H}_1: \alpha \neq 0
```

```
require(AER)
reg <- lm(mfund$windsor ~ mfund$valmrkt)
coeftest(reg)
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0036469 0.0014094 2.5876 0.01046 *
## mfund$valmrkt 0.9357170 0.0291499 32.1002 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

Now look at beta:

```
\mathbb{H}_0: \beta = 1, Windsor is just the market (+ alpha).
```

 \mathbb{H}_1 : $\beta \neq 1$, Windsor softens or exaggerates market moves.

```
linearHypothesis(reg, "mfund$valmrkt = 1")
## Linear hypothesis test
##
## Hypothesis:
## mfund valmrkt = 1
##
## Model 1: restricted model
## Model 2: mfund$windsor ~ mfund$valmrkt
##
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 179 0.064082
## 2 178 0.062378 1 0.0017042 4.8632 0.02872 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Anscombe's quartet comprises four datasets that have similar statistical properties ...

```
anscombe <- read.csv('anscombe.csv')
attach(anscombe)
c(x.m1=mean(x1),x.m2=mean(x2),x.m3=mean(x3),x.m4=mean(x4))
## x.m1 x.m2 x.m3 x.m4
## 9 9 9 9
c(y.m1=mean(y1),y.m2=mean(y2),y.m3=mean(y3),y.m4=mean(y4))
## y.m1 y.m2 y.m3 y.m4
## 7.500909 7.500909 7.500909</pre>
```

```
c(x.sd1=sd(x1),x.sd2=sd(x2),x.sd3=sd(x3),x.sd3=sd(x4))
```

x.sd1 x.sd2 x.sd3 x.sd3
3.316625 3.316625 3.316625 3.316625

c(y.sd1=sd(y1), y.sd2=sd(y2), y.sd4=sd(y3), y.sd4=sd(y4))

y.sd1 y.sd2 y.sd4 y.sd4
2.031568 2.031657 2.030424 2.030579

c(cor1=cor(x1,y1),cor2=cor(x2,y2),cor3=cor(x3,y3),cor4=cor(x4,y4))

cor1 cor2 cor3 cor4
0.8164205 0.8162365 0.8162867 0.8165214

...but vary considerably when graphed:

Linear regression on each dataset:

The regression lines and R^2 values are the same...

```
areg <- list(areg1=lm(y1~x1),areg2=lm(y2~x2),areg3=lm(y3~x3),areg4=lm(y4~x4
attach(areg)
cbind(areg1$coef,areg2$coef,areg3$coef,areg4$coef)
## [,1] [,2] [,3] [,4]
## (Intercept) 3.0000909 3.0024545 3.0017273
## x1 0.5000909 0.500000 0.4997273 0.4999091
s <- lapply(areg,summary)
c(s$areg1$r.sq,s$areg2$r.sq,s$areg3$r.sq,s$areg4$r.sq)
## [1] 0.6665425 0.6662420 0.6663240 0.6667073
```

...but residual plots show the differences:

Rregression Diagnostics: Nonrandom Sampling

Observation

Rregression Diagnostics: Heteroskedasticity

Left: two variables are not collinear; Right: there is high collinearity.

Contour plots for the RSS as a function of parameters β . Left: regression on two variables that are not collinear; Right: regression on two variables that are highly collinear. Because of the collinearity, there are many pairs of β with a similar value for the RSS.

From (9), we can see that:

- If X_1, \ldots, X_p are orthogonal, then $\hat{\beta}_j$ is equal to the simple linear regression coefficient of y on X_j .
- If X_1, \ldots, X_p are correlated in particular if X_j is highly correlated with the other predictors, then \hat{u}_j will be close to 0. This makes $\hat{\beta}_j$ unstable, as both the denominator and the numerator are small.

From (13), we can see that:

If X_j is highly correlated with the other predictors, the variance of β_j is inflated, making it less likely to be significant.

- A simple way to detect collinearity is to look at the correlation matrix of the predictors.
- However, it is possible for collinearity to exist between three or more variables even if no pair of variables has a particularly high correlation. This is called **multicollinearity**.
- Variance inflation factor (VIF):

$$\mathsf{VIF}\left(\widehat{\beta}_{j}\right) = \frac{1}{1 - \mathsf{R}_{X_{j}|X_{-j}}^{2}}$$

, where $R_{X_j|X_{-j}}^2$ is the R^2 from a regression of X_j onto all of the other predictors.

• VIF \geq 1. Large VIF indicates a problematic amount of collinearity.

- When faced with the problem of collinearity, a simple solution is to drop one of the problematic variables.
- Suppose two variables both contribute in explaining *y*, but are highly correlated with each other.
 - Both will be insignificant if both are included in the regression model.
 - Dropping one will likely make the other significant.
- This is why we can't remove two (or more) supposedly insignificant predictors *at a time*: significance depends on what other predictors are in the model!

Maximum Likeliood Estimation

- While least squares regression learns a deterministic function f(x) that directly maps each x into a prediction of y, an alternative approach is to learn the conditional distribution p(y|x) and use the estimated p(y|x) to form a prediction of y.
- To do so, let $\mathcal{H} = \{q_{\theta}(y|x) : \theta \in \Theta\}$, where the hypotheses $q_{\theta}(y|x)$ are conditional distributions parametrized by $\theta \in \Theta$.
- We select a q_θ (y|x) ∈ H, or equivalently, a θ ∈ Θ, by minimizing the empirical KL divergence, or equivalently, by maximizing the (log) likelihood function.

Maximum Likeliood Estimation

The log likelihood function²⁰:

$$\log \mathcal{L}\left(heta
ight) = \sum_{i=1}^{N} \log q_{ heta}\left(y_{i} \left|x_{i}
ight)$$

The maximum likelihood estimator chooses

$$\widehat{\theta} = \arg \max_{\theta \in \Theta} \log \mathcal{L}\left(\theta\right)$$

²⁰Also written as log $\mathcal{L}(\theta|\mathcal{D})$ to emphasize its dependence on sample \mathcal{D} .

Normal Linear Model

The normal linear regression model is $\mathcal{H} = \{q_{\theta}(y|x)\}$, where

$$q_{\theta}(y|x) = \mathcal{N}\left(x'\beta, \sigma^{2}\right)$$
(18)

, where $\theta = (\beta, \sigma)$.

This is equivalent to assuming²¹:

$$y = x'\beta + e, \ e \sim \mathcal{N}\left(0, \sigma^2\right)$$
 (19)

²¹Notice the strong assumptions imposed by (18) and (19). In addition to assuming a linear regression function, we are now assuming that (1) at each x, the scatter of y around the regression function is normally distributed (**Gaussianity**); (2) the variance of this scatter is constant (**homoskedasticity**); and (3) there is no dependence between this scatter and anything else (**error independence**).

Normal Linear Model

Given sample \mathcal{D} and model (18),

$$\log \mathcal{L} = \sum_{i=1}^{N} \log \left\{ \frac{1}{\sqrt{2\pi\sigma}} \exp \left(-\frac{1}{2\sigma^2} \left(y_i - x_i'\beta \right)^2 \right) \right\}$$

$$= -\frac{N}{2} \log \left(2\pi \right) - N \log \sigma - \frac{1}{2\sigma^2} \underbrace{\sum_{i=1}^{N} \left(y_i - x_i'\beta \right)^2}_{\text{RSS}}$$
(20)

Normal Linear Model

Maximizing (20) with respect to β and $\sigma \Rightarrow$

$$\frac{\partial \log \mathcal{L}}{\partial \beta} = 0 \Rightarrow \widehat{\beta} = \left[\sum_{i=1}^{N} x_i x_i'\right]^{-1} \sum_{i=1}^{N} x_i y_i = (X'X)^{-1} X'Y$$
$$\frac{\partial \log \mathcal{L}}{\partial \sigma} = 0 \Rightarrow \widehat{\sigma} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(y_i - x_i'\widehat{\beta}\right)^2}$$

Thus, maximum likelihood estimation of the normal linear model produces the same estimate of β as least squares regression.
Normal Linear Model

Let's fit the normal linear model (18) on the data we generated on page 20:

```
# Define the negative log likelihood function
nll <- function(theta){</pre>
  beta0 <- theta[1]
  beta1 <- theta[2]
  beta2 <- theta[3]
  sigma <- theta[4]
  N \leq - length(y)
  z <- (y - beta0 - beta1*x1 - beta2*x2)/sigma
  logL <- -1*N*log(sigma) - 0.5*sum(z^2)
  return(-logL)}
# Minimize the negative likelihood function
mlefit \leq optim(c(0,0,0,1),nll) \# initial value for theta: (0,0,0,1)
mlefit$par # parameter estimate
```

[1] 1.010153 -2.591790 5.062709 1.004935

Normal Linear Model

```
# Alternatively.
require(bbmle)
parnames(nll) <- c("beta0","beta1","beta2","sigma")</pre>
result <- mle2(nll,start=c(beta0=0,beta1=0,beta2=0,sigma=1))</pre>
coeftest(result)
##
## z test of coefficients:
##
       Estimate Std. Error z value Pr(>|z|)
##
## beta0 1.010134 0.118487 8.5253 < 2.2e-16 ***
## beta1 -2.591654 0.224609 -11.5385 < 2.2e-16 ***
## beta2 5.062493 0.311189 16.2682 < 2.2e-16 ***
## sigma 1.004913 0.031778 31.6227 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Normal Linear Model

Likelihood profile: beta2

Likelihood profile: sigma

- The CEF $f(x) = \mathbb{E}(y|x)$ is seldom linear. The least squares linear regression model, however, doesn't have to be linear in x either. We can move beyond linearity in inputs x as long as we retain linearity in parameters β^{22} .
- Polynomial regression is a standard way to extend linear regression to settings in which the relationship between x and y is nonlinear.

²²We have already seen examples of including nonlinear terms in x such as $\log(x)$ and interaction effects (x_1x_2) in the regression model.

Polynomial Regression

Polynomial Regression

Data: income survey for men in central Atlantic region of USA

```
require(AER)
require(ISLR) # contains the data set 'Wage'
fit <- lm(wage ~ poly(age,4,raw=T), data=Wage) # degree-4 polynomial
coeftest(fit)
##
## t test of coefficients:
##
##
                            Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.8415e+02 6.0040e+01 -3.0672 0.0021803 **
## poly(age, 4, raw = T)1 2.1246e+01 5.8867e+00 3.6090 0.0003124 ***
## poly(age, 4, raw = T)2 -5.6386e-01 2.0611e-01 -2.7357 0.0062606 **
## poly(age, 4, raw = T)3 6.8107e-03 3.0659e-03 2.2214 0.0263978 *
## poly(age, 4, raw = T)4 -3.2038e-05 1.6414e-05 -1.9519 0.0510386 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Degree-4 Polynomial

age

- For the following analysis, consider modeling the relationship between *y* and a single input variable *x*.
- So far we have imposed a global structure on the relationship between x and y.
- Piecewise regression breaks the input space into distinct regions and fit a different relationship in each region.

Piecewise Constant Regression

How it works:

1. Divide the range of x into M regions by creating M - 1 cutpoints, or **knots**, ξ_1, \ldots, ξ_{M-1} . Then construct the following dummy variables:

Region	$\phi(\mathbf{x})$
R_1	$\phi_1\left(x\right) = \mathcal{I}\left(x < \xi_1\right)$
R_2	$\phi_2(x) = \mathcal{I}(\xi_1 \le x < \xi_2)$
÷	
R _M	$\phi_{M}(x) = \mathcal{I}\left(\xi_{M-1} \leq x\right)$

How it works:

2. Fit the following model:

$$y = \beta_1 \phi_1(x) + \beta_2 \phi_2(x) + \dots + \beta_M \phi_M(x) + e$$
(21)

 $\sum_{m=1}^{M} \beta_m \phi_m(x)$ is a step function or piecewise constant function, and (21) is called a piecewise constant regression model.

Solving (21) by least squares \Rightarrow

$$\widehat{\beta}_m = \overline{y}_m$$

, where $\overline{y}_m \equiv \frac{1}{n_m} \sum_{x_i \in R_m} {y_i}^{23}$.

i.e., for every $x \in R_m$, we make the same prediction, which is simply the mean of the response values for the training observations in R_m .

 $^{^{23}}n_m$ is the number of observations in R_m .

```
# cut(x,M) divides x into M pieces of equal length
#
          and generates the corresponding dummy variables
fit <- lm(wage ~ 0 + cut(age,4), data=Wage) # no intercept
coeftest(fit)
##
## t test of coefficients:
##
##
                         Estimate Std. Error t value Pr(>|t|)
## cut(age, 4)(17.9,33.5] 94.1584 1.4761 63.790 < 2.2e-16 ***
## cut(age, 4)(33.5,49] 118.2119 1.0808 109.379 < 2.2e-16 ***
## cut(age, 4)(49,64.5] 117.8230 1.4483 81.351 < 2.2e-16 ***</pre>
## cut(age, 4)(64.5,80.1] 101.7990 4.7640 21.368 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Piecewise Constant

age

Basis Functions

In general, $\phi(x)$ are called **basis functions** and do not have to be dummy variables. They can be any functions of x.

A linear basis function model is defined as²⁴:

$$y = \beta_1 \phi_1(x) + \beta_2 \phi_2(x) + \dots + \beta_M \phi_M(x) + e = \beta' \Phi(x) + e \qquad (22)$$

, where $\beta = (\beta_1, \dots, \beta_M)'$ and $\Phi = (\phi_1, \dots, \phi_M)'$.

Solving (22) by least squares \Rightarrow

$$\widehat{\beta} = \left(\Phi' \Phi \right)^{-1} \Phi' Y$$

, where $\Phi = \Phi(X)$.

²⁴Notice that (22) is the same as (21), except now $\phi(x)$ can be any function of x.

- Polynomial and piecewise constant regression models are special cases of linear basis function models²⁵.
- We can also do **piecewise polynomial regression**, which involves fitting different polynomials over different regions of *x*.

²⁵For example, for *K*-degree polynomial regressions, $\phi_1(x) = 1, \phi_2(x) = x, \phi_3(x) = x^2, \dots, \phi_K(x) = x^K$.

Regression Splines

Piecewise Constant

Piecewise Linear

Oftentimes it is desired that the fitted curve is continuous over the range of x, i.e., there should be no jump at the knots.

For piecewise linear regression with one knot (ξ) , this means:

$$y = \begin{cases} \alpha_{10} + \alpha_{11}x + e & x < \xi \\ \alpha_{20} + \alpha_{21} (x - \xi) + e & x \ge \xi \end{cases}$$
(23)

under the constraint that

$$\alpha_{10} + \alpha_{11}\xi = \alpha_{20} \tag{24}$$

(23) and (24) \Rightarrow the continuous piecewise linear model can be parametrized as

$$y = \beta_0 + \beta_1 x + \beta_2 (x - \xi)_+ + e$$
(25)

, where $\beta_0 = \alpha_{10}$, $\beta_1 = \alpha_{11}$, $\beta_2 = \alpha_{21} - \alpha_{11}$, and $(x - \xi)_+ \equiv (x - \xi)\mathcal{I} (x \ge \xi)$.

Regression Splines

Continuous Piecewise Linear

Piecewise-linear Basis Function

Regression Splines

For higher-order piecewise polynomial regression, in addition to the fitted curve being continuous, we may also want it to be smooth by requiring the derivatives of the piecewise polynomials to be also continuous at the knots.

For piecewise cubic polynomial regression with one knot (ξ), this means:

$$y = \begin{cases} \alpha_{10} + \alpha_{11}x + \alpha_{12}x^2 + \alpha_{13}x^3 + e & x < \xi \\ \alpha_{20} + \alpha_{21}(x - \xi) + \alpha_{22}(x - \xi)^2 + \alpha_{23}(x - \xi)^3 + e & x \ge \xi \end{cases}$$
(26)

subject to the constraints that the piecewise polynomials as well as their 1^{st} and 2^{nd} derivatives are continuous at ξ :

$$\alpha_{10} + \alpha_{11}\xi + \alpha_{12}\xi^{2} + \alpha_{13}\xi^{3} = \alpha_{20}$$

$$\alpha_{11} + 2\alpha_{12}\xi + 3\alpha_{13}\xi^{2} = \alpha_{21}$$

$$\alpha_{12} + 3\alpha_{13}\xi = \alpha_{22}$$
(27)

(26) and (27) \Rightarrow $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x - \xi)^3_+ + e$ (28) , where $\beta_0 = \alpha_{10}, \beta_1 = \alpha_{11}, \beta_2 = \alpha_{12}, \beta_3 = \alpha_{13}, \text{ and } \beta_4 = \alpha_{23} - \alpha_{13}.$

Regression Splines

(25) and (28) are examples of **regression splines**. (25) is called a *linear spline* and (28) is called a *cubic spline*.

Regression Spline

A degree-d spline is a piecewise degree-d polynomial, with continuity in derivatives up to degree d - 1 at each knot.

In general, a degree−d spline with M−1 knots has d + M degrees of freedom²⁶.

²⁶For example, a linear spline has 1 + M degrees of freedom (see (25)). A cubic spline has 3 + M degrees of freedom (see (28)). In comparison, a degree-*d* polynomial has d + 1 degrees of freedom.

Piecewise Cubic Polynomials

- Splines tend to have high variance at the boundary ($x < \xi_1$ or $x \ge \xi_{M-1}$, where M 1 is the total number of knots).
- A **natural spline** is a regression spline with additional boundary constraints: the function is required to be *linear* beyond the boundary knots, in order to produce more stable estimates.

```
require(splines)
# Cubic Spline
# ------
# bs() generates B-spline basis functions with specified degrees
# of polynomials and knots. Here, knots at age 25,40,60
fit.cs <- lm(wage ~ bs(age,knots=c(25,40,60),degree=3), data=Wage)
# Natural Cubic Spline
# -------
# ns() fits a natural cubic spline
fit.ncs <- lm(wage ~ ns(age,knots=c(25,40,60)))</pre>
```

```
coeftest(fit.cs)
##
## t test of coefficients:
##
##
                                              Estimate Std. Error t value
## (Intercept)
                                               60.4937
                                                          9.4604 6.3944
## bs(age, knots = c(25, 40, 60), degree = 3)1 3.9805 12.5376 0.3175
## bs(age, knots = c(25, 40, 60), degree = 3)2 44.6310 9.6263 4.6364
## bs(age, knots = c(25, 40, 60), degree = 3)3 62.8388 10.7552 5.8426
## bs(age, knots = c(25, 40, 60), degree = 3)4 55.9908 10.7063 5.2297
## bs(age, knots = c(25, 40, 60), degree = 3)5 50.6881 14.4018
                                                                  3.5196
\#\# bs(age, knots = c(25, 40, 60), degree = 3)6 16.6061 19.1264
                                                                  0.8682
##
                                               Pr(>|t|)
## (Intercept)
                                              1.863e-10 ***
\#\# bs(age, knots = c(25, 40, 60), degree = 3)1 0.7508987
## bs(age, knots = c(25, 40, 60), degree = 3)2 3.698e-06 ***
## bs(age, knots = c(25, 40, 60), degree = 3)3 5.691e-09 ***
## bs(age, knots = c(25, 40, 60), degree = 3)4 1.815e-07 ***
## bs(age, knots = c(25, 40, 60), degree = 3)5 0.0004387 ***
                                                           (C) Jiaming Mao
## bs(age, knots = c(25, 40, 60), degree = 3)6 0.3853380
```

```
coeftest(fit.ncs)
##
## t test of coefficients:
##
                                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                  54.7595 5.1378 10.6581 < 2.2e-16 **
## ns(age, knots = c(25, 40, 60))1 67.4019 5.0134 13.4442 < 2.2e-16 **
## ns(age, knots = c(25, 40, 60))2 51.3828 5.7115 8.9964 < 2.2e-16 **
## ns(age, knots = c(25, 40, 60))3 88.5661 12.0156 7.3709 2.181e-13 **
## ns(age, knots = c(25, 40, 60))4 10.6369 9.8332 1.0817 0.2795
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Cubic and Natural Cubic Spline

age

So far we have been dealing with a single input x in our discussion of polynomial regression and regression splines. A natural way to extend this discussion to multiple inputs is to assume the following model:

$$y = \omega_0 + \omega_1 (x_1) + \omega_2 (x_2) + \cdots + \omega_p (x_p) + e$$
⁽²⁹⁾

, where

$$\omega_j(x_j) = \sum_{m=1}^{M_j} \beta_{jm} \phi_{jm}(x_j)$$

(29) is called a generalized additive model (GAM).

The GAM allows for flexible nonlinear relationships in each dimension of the input space while maintaining the additive structure of linear models.

- For example, we can fit a linear relationship in x₁, a polynomial in x₂, a cubic spline in x₃, etc.
- The GAM remains a linear basis function model and therefore can be fit by least squares²⁷.

 $^{27}(29)$ is equivalent to

$$y=eta^{\prime} \Phi\left(x
ight)+e$$
 , where $\Phi=\left(\mathbf{1},\phi_{11},\ldots,\phi_{1M_{1}},\ldots,\phi_{p1},\ldots,\phi_{pM_{p}}
ight)^{\prime}.$

fit <- lm(wage ~ poly(year,2) + ns(age,knots=c(25,40,60)) + education)
coeftest(fit)</pre>

```
##
## t test of coefficients:
##
##
                                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                 47.5751 4.8992 9.7108 < 2.2e-16 **
## poly(year, 2)1
                                           35.2930 3.6974 0.0002217 **
                                130.4942
## poly(year, 2)2
                                -36.3005 35.2579 -1.0296 0.3032959
## ns(age, knots = c(25, 40, 60))1 51.1072 4.4572 11.4662 < 2.2e-16 **
## ns(age, knots = c(25, 40, 60))2 33.1989 5.0767 6.5394 7.237e-11 **
\#\# ns(age, knots = c(25, 40, 60))3 53.5004
                                            10.6621 5.0178 5.532e-07 **
## ns(age, knots = c(25, 40, 60))4 12.3733 8.6866 1.4244 0.1544320
## education2. HS Grad
                                 10.8174 2.4305 4.4507 8.871e-06 **
## education3. Some College 23.3191 2.5626 9.0997 < 2.2e-16 **
## education4. College Grad 37.9867 2.5464 14.9176 < 2.2e-16 **
## education5. Advanced Degree 62.5184 2.7629 22.6275 < 2.2e-16 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                        (C) Jiaming Mao
```


A GAM model of wage with a quadratic polynomial in year, a natural cubic spline in age, and a step function in education

Fitting a linear basis function model (22) can be thought of as a two-step process:

- Transform x into $\Phi(x)^{28}$.
 - Let $z = \Phi(x) \in \mathcal{Z}$. $\Phi: \mathcal{X} \to \mathcal{Z}$ is called a **feature transform**.
- **②** Fit the linear model: $\mathcal{H}_{\Phi} = \{h : h(z) = \beta'z\}$, where \mathcal{H}_{Φ} denotes the hypothesis set corresponding to the feature transform Φ .

²⁸x can be multi-dimensional: $x = (x_1, \ldots, x_p)$

Feature Transform

Left: data in \mathcal{X} -space; Right: data in \mathcal{Z} -space

Generalization Issues

If we decide on the feature transform Φ *before* seeing the data, then the VC generalization bound holds with $d_{VC}(\mathcal{H}_{\Phi})$ as the VC dimension.

I.e., for any $g \in \mathcal{H}_{\Phi}$, with probability at least $1 - \delta$,

$$E_{out}(g) \leq E_{in}(g) + \sqrt{\frac{8}{N} \ln \frac{4\left((2N)^{d_{VC}} + 1\right)}{\delta}}$$
(30)
= $E_{in}(g) + \mathcal{O}\left(\sqrt{\frac{d_{VC}}{N} \ln N}\right)$

, where $d_{VC} = d_{VC} \left(\mathcal{H}_{\Phi} \right)$.
Therefore, when choosing a high-order polynomial, or a spline with many degrees of freedom, or a GAM with complex nonlinearities in many dimensions, we cannot avoid the approximation-generalization tradeoff:

- More complex \mathcal{H}_{Φ} $(d_{VC}(\mathcal{H}_{\Phi})\uparrow) \Rightarrow E_{in}\downarrow$
- Less complex \mathcal{H}_{Φ} $(d_{VC}(\mathcal{H}_{\Phi})\downarrow) \Rightarrow |E_{out} E_{in}|\downarrow$

Generalization Issues

What if we try a transformation Φ_1 first, and then, finding the results unsatisfactory, decide to use Φ_2 ? Then we are effectively using a model that contains both $\{\beta'\Phi_1(x)\}$ and $\{\beta'\Phi_2(x)\}$.

- For example, if we try a linear model first, then a quadratic polynomial, then a piecewise constant model, before settling on a cubic spline, then d_{VC} in (30) should be the VC dimension of a hypothesis set that contains not only the cubic spline model, but all of the aforementioned models.
- The process of trying a series of models until we get a satisfactory result is called **specification search** or **data snooping**. In general, the more models you try, the poorer your final result will generalize out of sample.

Appendix: Frisch-Waugh-Lovell Theorem

Proof.

Define $\mathbb{M} \doteq \mathbb{I} - \mathbb{H} = \mathbb{I} - X (X'X)^{-1} X'$. Then for any Y, we can write

$$Y = X\widehat{\beta} + \widehat{e} = \mathbb{H}Y + \mathbb{M}Y$$

, where $\widehat{e} = Y - X (X'X)^{-1} X'Y = (\mathbb{I} - \mathbb{H}) Y = \mathbb{M}Y$ is orthogonal to X.

Now consider the model

$$Y = X_1\beta_1 + X_2\beta_2 + e$$

OLS estimation \Rightarrow

$$Y = X_1\widehat{\beta} + X_2\widehat{\beta} + \widehat{e}$$

Appendix: Frisch-Waugh-Lovell Theorem

Proof. (cont.) Define $\mathbb{M}_{X_2} \doteq \mathbb{I} - X_2 (X'_2 X_2)^{-1} X'_2$. Then $\mathbb{M}_{X_2} Y = \mathbb{M}_{X_2} X_1 \widehat{\beta}_1 + \mathbb{M}_{X_2} X_2 \widehat{\beta}_2 + \mathbb{M}_{X_2} \widehat{e}$ $\stackrel{[\underline{1}]}{=} \mathbb{M}_{X_2} X_1 \widehat{\beta}_1 + \widehat{e}$ (31)

, where [1] follows since $\mathbb{M}_{X_2}X_2 = 0$ and $\mathbb{M}_{X_2}\hat{e} = \hat{e}$ because $\hat{e} \perp X_2$.

Finally, notice that because $\hat{e} \perp X_1$, we also have $\hat{e} \perp \mathbb{M}_{X_2}X_1$. Hence (31) represents an orthogonal projection of $\mathbb{M}_{X_2}Y$ on $\mathcal{R}(\mathbb{M}_{X_2}X_1)$. Therefore, OLS regression of $\mathbb{M}_{X_2}Y$ on $\mathbb{M}_{X_2}X_1$ will produce the same $\hat{\beta}_1$ as in (31).

Appendix: Gradient Descent

Gradient descent paths with different starting points

© Jiaming Mao

Acknowledgement I

Part of this lecture is based on the following sources:

- Gramacy, R. B. *Applied Regression Analysis*. Lecture at the University of Chicago Booth School of Business, retrieved on 2017.01.01. [link]
- Hastie, T., R. Tibshirani, and J. Friedmand. 2008. *The Elements of Statistical Learning* (2nd ed.). Springer.
- James, G., D. Witten, T. Hastie, and R. Tibshirani. 2013. An Introduction to Statistical Learning: with Applications in R. Springer.
- Penn State University. *Probability Theory and Mathematical Statistics*. Online course, retrieved on 2017.01.01. [link]
- Schmidt, M. Machine Learning. Lecture at the University of British Columbia, retrieved on 2021.01.01. [link]
- Shalizi, C. R. 2019. Advanced Data Analysis from an Elementary Point of View. Manuscript.

- Taddy, M. *Big Data*. Lecture at the University of Chicago Booth School of Business, retrieved on 2017.01.01. [link]
- Tibshirani, R. *Convex Optimization*. Lecture at Carnegie Mellon University, retrieved on 2021.01.01. [link]

