Model Selection and Regularization

Jiaming Mao

Xiamen University
Model Assessment and Model Selection

- **Model assessment**: evaluating a model’s performance

- **Model selection**: choosing the model with the best performance

- Both model assessment and model selection require estimate of a model’s **out-of-sample error**.
Model Assessment

To evaluate the performance of a model \mathcal{H}, we can *randomly* split our data into two parts:

- **Training set**: used to fit the model (select g from \mathcal{H})
- **Test set**: used to see how good the fit is (evaluate g’s performance)
Training versus Testing

Training: \[\Pr (|E_{in} (g) - E_{out} (g)| > \epsilon) \leq 4m_{\mathcal{H}} (2N) e^{-\frac{1}{8} \epsilon^2 N} \] (1)

Testing: \[\Pr (|E_{test} (g) - E_{out} (g)| > \epsilon) \leq 2e^{-2\epsilon^2 N} \] (2)

- The generalization bound for test error \(E_{test} (g) \) is much tighter.

- The test set is not biased, whereas the training set has an optimistic bias, since it is used to choose a hypothesis that looks good on it.

- The price for a test set is fewer data for training.
Model Selection

To choose the best model \mathcal{H}_* among a set of models $\mathbb{H} = \{\mathcal{H}_0, \mathcal{H}_1, \ldots, \mathcal{H}_n\}$, we can *randomly* split our data into three parts: a training set, a test set, and a validation (hold-out) set:
Model Selection

Then follow the following steps:

1. Fit each model \mathcal{H}_i on the training set and obtain g_i for $i = 0, 1, \ldots, n$.

2. Use the validation set to evaluate the performance of each g_i and select the hypothesis $g_* \in \mathcal{H}_*$ with the smallest validation-set error – \mathcal{H}_* is our selected model.

3. Combine the training set and the validation set. Refit \mathcal{H}_* on this larger set\(^1\) to obtain g_{**} – this is our final selected hypothesis.

4. Assess the performance of g_{**} on the test set.

This is called the **validation set approach**.

\(^1\) which corresponds to the training set in model assessment, since once we have picked a model – here \mathcal{H}_* – what is left to do is model assessment.
Model Selection

\[D \]

- \(\mathcal{H}_0 \): trains \(g_0 \) and estimates \(R_{out}(g_0) \)
- \(\mathcal{H}_1 \): trains \(g_1 \) and estimates \(R_{out}(g_1) \)
- \(\vdots \)
- \(\mathcal{H}_n \): trains \(g_n \) and estimates \(R_{out}(g_n) \)

Pick \(\mathcal{H}_* \) with lowest \(R_{out}(g^*) \), then retrain in \(\mathcal{H}_* \) on entire set.

Training Set trains \(g_* \) in \(\mathcal{H}_* \).

Test Set tests \(g_* \) in \(\mathcal{H}_* \) and estimates \(R_{out}(g_*) \).
A validation set is needed because we cannot use the test set to both help select the best model and assess the performance of the final hypothesis.

Once a data set has been used in the learning process, it is “contaminated” – it obtains an optimistic bias, and the error calculated on the data set no longer has the tight bound in (2).
Often times, the different models in \(\mathbb{H} \) can be indexed by a complexity parameter \(\lambda \), which we call a **hyperparameter**. Choosing the best model amounts to finding the best value of \(\lambda \).

- For example, if we are choosing among polynomial models of varying degrees, then \(\lambda \) is the degree of the polynomial.

Using the validation set approach, the training set is used to fit each model with a given \(\lambda \), the validation set is the set on which \(\lambda \) itself is fit, while the test set is used to estimate the true out-of-sample performance of the final hypothesis.
MPG and Horsepower

![Graph showing the relationship between miles per gallon (MPG) and horsepower. The graph includes three lines of different degrees: Linear, Degree 2, and Degree 5. The data points are scattered across the graph, with the lines indicating different trends based on the degree of polynomial fit.](image-url)
Want to compare linear vs higher-order polynomial terms in a linear regression of miles per gallon (MPG) on horsepower on a data set of 392 vehicles.

Suppose there exists an independent test data set somewhere else, so we only need this data set for model selection (without assessment). Then we can randomly split the 392 observations into two sets, a training set containing 196 of the data points, and a validation set containing the remaining 196 observations.
```r
require(ISLR) # contains the data set 'Auto'
attach(Auto)
train <- sample(392,196) # draw a random subset from the sample
fit <- lm(mpg ~ horsepower, subset=train)
yhat <- predict(fit,Auto)
V.e <- (mpg - yhat)[-train] # validation set error
V.MSE <- mean(V.e^2) # validation set MSE
V.MSE
```

```r
## [1] 23.29559
```
V.MSE <- rep(0,5)
for (i in 1:5){
 fit <- lm(mpg ~ poly(horsepower,i), subset=train)
 V.e <- (mpg - predict(fit,Auto))[-train]
 V.MSE[i] <- mean(V.e^2)
}
V.MSE

Left: Validation-set MSE for a single split into training and validation data sets. Right: The validation method was repeated ten times, each time using a different random split.
The Validation Set Approach

Problems:

- Results can be highly variable, depending on which observations are included in the training set and which are in the validation set.
- The larger the validation set is, the smaller the training set has to be, hence the better the validation set errors are as estimates of true out-of-sample errors, but the poorer the model fits produced by the training set are.
- Conversely, the smaller the validation set, the better the model fits on the training set, but the poorer the validation set errors are as estimates of true out-of-sample errors.
Cross Validation

- The results of the validation set approach are variable due to the whims of a single random split. Thus, it might be better to randomly split the data multiple times and average the results – this is what cross-validation does.

- Like the bootstrap, cross-validation is a resampling method: these methods involve repeatedly drawing samples from a training set and refitting a model of interest on each sample in order to obtain additional information about the fitted model.
Cross Validation

- The cross-validation approach splits the original data into two parts: a training set and a test set, with no separate validation set.

- The training set is then randomly divided into K equal-sized folds.

- In turn, training is performed on $K - 1$ folds (combined), and the remainder fold is used for evaluation. The K evaluation results are then averaged to produce an estimate of a model’s out-of-sample error.
Cross Validation

All Data

Training data Test data

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 1 Split 2 Split 3 Split 4 Split 5

Finding Parameters

Final evaluation Test data

source

© Jiaming Mao
Cross Validation

The K-fold cross-validation error of a model \mathcal{H} is

$$CV(K)(\mathcal{H}) = \frac{1}{K} \sum_{k=1}^{K} E_{in}^{(k)}(g^{(-k)}(\mathcal{H}))$$

where $g^{(-k)}(\mathcal{H})$ is the hypothesis selected by fitting \mathcal{H} on the training data with the k^{th} fold removed, and $E_{in}^{(k)}(.)$ is the error calculated on the k^{th} fold data\(^2\).

\(^2\)Note that $g^{(-k)}(\mathcal{H})$ can be different for different k, hence the cross-validation error is obtained by averaging over the performance of different hypotheses.
Setting $K = N$ yields the leave-one out cross-validation (LOOCV) error:

$$CV_{(N)}(\mathcal{H}) = \frac{1}{N} \sum_{i=1}^{N} E_{in}^{(i)} \left(g^{(-i)}(\mathcal{H}) \right)$$

, in which case $g^{(-i)}(\mathcal{H})$ is the result of fitting \mathcal{H} on the entire training set with only the i^{th} data point removed, and $E_{in}^{(i)}(.)$ is the difference between the prediction made by $g^{(-i)}(\mathcal{H})$ on the i^{th} data point and its true value, according to the loss function used.
LOOCV
LOOCV

```r
# LOOCV
require(boot)
LOOCV.MSE <- rep(0, 5)
for (i in 1:5) {
  fit <- glm(mpg ~ poly(horsepower, i))
  LOOCV.MSE[i] <- cv.glm(Auto, fit)$delta[1]
}
LOOCV.MSE
```

```
```

© Jiaming Mao
10-fold CV

```r
CV.MSE <- rep(0, 5)
for (i in 1:5){
  fit <- glm(mpg ~ poly(horsepower, i))
  CV.MSE[i] <- cv.glm(Auto, fit, K=10)$delta[1]
}
CV.MSE
```

```r
```
Left: The LOOCV error curve. Right: 10-fold CV was run nine separate times, each with a different random split of the data into ten folds. The figure shows the nine slightly different CV error curves.
When N is large, LOOCV can be computationally expensive: need to fit the model N times!

LOOCV gives almost unbiased estimate of the out-of-sample error, since its training set contains almost the entire data set.

However, the LOOCV estimate has high variance: when we perform LOOCV, we are in effect averaging the outputs of N fitted models, each of which is trained on an almost identical set of observations. Therefore, these outputs are highly positively correlated with each other.

There exists a *bias-variance tradeoff*: when K is small, bias is high and variance is low. When K is large, bias is low and variance is high.

Rule of thumb: $K = 5$ or $K = 10$.
Cross-Validation for Regression

Left: target function (black), linear fit (orange), smoothing spline fits (blue & green). Right: training error (grey), prediction error (red), Var(e) (dashed).
Cross-Validation for Regression

Left: target function (black), linear fit (orange), smoothing spline fits (blue & green). Right: training error (grey), prediction error (red), Var(e) (dashed).

© Jiaming Mao
Cross-Validation for Regression

Left: target function (black), linear fit (orange), smoothing spline fits (blue & green). Right: training error (grey), prediction error (red), Var(e) (dashed).
True and estimated prediction error for the simulated data sets. True prediction error (blue), LOOCV estimate (black dashed), 10-fold CV estimate (orange). Crosses indicate the minimum of each of the error curves.
Cross-Validation for Classification

Two-dimensional classification data. Purple dashed: the Bayes decision boundary; Black: estimated decision boundaries from linear (left) and quadratic (right) logistic regressions.
Cross-Validation for Classification

Two-dimensional classification data. Purple dashed: the Bayes decision boundary; Black: estimated decision boundaries from cubic (left) and quartic (right) logistic regressions.
Logistic regression using polynomial functions of the predictors. True misclassification rate (brown), training error (blue), 10-fold CV error (black).
Cross-Validation for Classification

KNN classifier. True misclassification rate (brown), training error (blue), 10-fold CV error (black).
Note on Cross-Validation

In choosing the K folds at random, we are assuming that (x_i, y_i) are independently drawn from the underlying population $p(x, y)$, i.e., our data $\mathcal{D} = \{(x_1, y_1), \ldots, (x_N, y_N)\}$ constitutes a random sample.

This would not be true in structured problems where (x_i, y_i) are not independent – for example, when \mathcal{D} is time-series data\(^a\).

\(^a\)See here for discussions on cross-validation for time series data.
Suppose for dependent variable y, we have two potential predictors, x_1 and x_2. If we limit our attention to linear models without interactions, we could fit the following four models:

Model A: $y_i = \beta_0 + e_i$
Model B: $y_i = \beta_0 + \beta_1 x_{i1} + e_i$
Model C: $y_i = \beta_0 + \beta_2 x_{i2} + e_i$
Model D: $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + e_i$

- Model A is the **null model**, which contains no predictors.
- Model D is the **full model**, which contains all potential predictors.
Alternatives to CV: Information Criteria

We could use CV to select the best model. Alternatively, we can use information criteria for model selection. These are metrics that make adjustment to the training error in order to account for the bias due to overfitting.

Akaike’s Information Criterion (AIC)

\[
\text{AIC} = -2 \log L + 2p = \text{Deviance} + 2p
\]

, where \(L \) is the value of the likelihood function\(^3\), and \(p \) is the number of parameters.

Bayesian Information Criterion (BIC)

\[
\text{BIC} = -2 \log L + p \log N = \text{Deviance} + p \log N
\]

, where \(N \) is the number of data points.

\(^3\) achieved at the maximum-likelihood estimate.
Alternatives to CV: Information Criteria

- For both AIC and BIC, smaller values are better. We can use them for model selection by choosing the model with the minimum AIC or BIC.

- The term $2p$ in AIC and $p \log N$ in BIC can be regarded as penalty terms that favor simpler models over more complicated ones.

- Both AIC and BIC have theoretical justifications that rely on asymptotic arguments.

- Since $\log N > 2$ for $N > 7$, BIC generally increases with p faster than AIC. Thus BIC tends to lead to the selection of smaller models than AIC.
require(foreach)

foreach (i = 1:5) %do% {
 model <- lm(mpg ~ poly(horsepower,i))
 c(AIC(model), BIC(model))
}

[[1]]
[1] 2363.324 2375.237
##
[[2]]
[1] 2274.354 2290.239
##
[[3]]
[1] 2275.531 2295.388
##
[[4]]
[1] 2276.108 2299.936
##
[[5]]
[1] 2268.663 2296.462

© Jiaming Mao
In general, given \(p \) potential predictors in a linear model, we can use CV or information criteria to choose the best subset of predictors. This is also called **variable selection**.

However, given \(p \) potential predictors, there are \(2^p \) possible models – each involves a subset of the \(p \) predictors. Comparing all of them becomes computationally infeasible when \(p \) is large.

Forward stepwise selection is a computationally efficient alternative that begins with the null model, and then adds predictors one-at-a-time.
Subset Selection

Forward Stepwise Selection

1. Let \mathcal{M}_0 denote the null model.

2. Fit all univariate models. Choose the one with the best in-sample fit (smallest RSS, highest R^2) and add that variable – say $x(1)$ – to \mathcal{M}_0. Call the resulting model \mathcal{M}_1.

3. Fit all bivariate models that include $x(1)$: $y \sim \beta_0 + \beta_{(1)}x(1) + \beta_jx_j$, and add x_j from the one with the best in-sample fit to \mathcal{M}_1. Call the resulting model \mathcal{M}_2.

4. Continue until your model selection rule (cross-validation error, AIC, BIC) is lower for the current model than for any of the models that add one variable.
Similarly, we can also do **backward stepwise selection**: start with the full model and remove predictors one-at-a-time.

Forward is in general better than backward:

- The full model can be expensive to fit, while the null model is usually available in closed form.
- The full model fit has high variance (because it is usually overfit). The null model is always the same.
- Backward selection requires $N > p$ (so that the full model can be fit). Forward selection can be used even when $p > N$.

Neither forward nor backward selection is guaranteed to find the best subset of predictors.
require(AER)
credit <- read.csv("Credit.csv")
fit <- lm(Balance~.,credit)
coeftest(fit)

##
t test of coefficients:
##
Estimate Std. Error t value Pr(>|t|)
(Intercept) -484.017314 26.076322 -18.562 < 2.2e-16 ***
Income -7.798884 0.233752 -33.364 < 2.2e-16 ***
Limit 0.191288 0.032555 5.876 9.011e-09 ***
Rating 1.129091 0.487398 2.317 0.02104 *
Cards 17.919886 4.329445 4.140 4.274e-05 ***
Age -0.638650 0.293004 -2.180 0.02988 *
GenderFemale -10.327215 9.896964 -1.044 0.29737
StudentYes 425.498590 16.608864 25.619 < 2.2e-16 ***
MarriedYes -7.482805 10.249865 -0.730 0.46580
##
Signif. codes: < 0.001 *** 0.001 ** 0.01 * 0.05 . 0.1

Credit Card Balance

```r
require(leaps)
all.fit <- regsubsets(Balance~., credit)
all <- summary(all.fit)
all$outmat
```

<table>
<thead>
<tr>
<th>#</th>
<th>Income</th>
<th>Limit</th>
<th>Rating</th>
<th>Cards</th>
<th>Age</th>
<th>GenderFemale</th>
<th>StudentYes</th>
<th>MarriedYes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1)</td>
<td>""</td>
<td>"*"</td>
<td>""</td>
<td>" "</td>
<td>" "</td>
<td>" "</td>
<td>" "</td>
</tr>
<tr>
<td>2</td>
<td>(1)</td>
<td>"*"</td>
<td>" "</td>
<td>"*"</td>
<td>" "</td>
<td>" "</td>
<td>" "</td>
<td>" "</td>
</tr>
<tr>
<td>3</td>
<td>(1)</td>
<td>"*"</td>
<td>" "</td>
<td>"*"</td>
<td>" "</td>
<td>" "</td>
<td>"*"</td>
<td>" "</td>
</tr>
<tr>
<td>4</td>
<td>(1)</td>
<td>"*"</td>
<td>"*"</td>
<td>" "</td>
<td>" "</td>
<td>" "</td>
<td>"*"</td>
<td>" "</td>
</tr>
<tr>
<td>5</td>
<td>(1)</td>
<td>"*"</td>
<td>" "</td>
<td>"*"</td>
<td>" "</td>
<td>" "</td>
<td>"*"</td>
<td>" "</td>
</tr>
<tr>
<td>6</td>
<td>(1)</td>
<td>"*"</td>
<td>"*"</td>
<td>"*"</td>
<td>" "</td>
<td>" "</td>
<td>"*"</td>
<td>" "</td>
</tr>
<tr>
<td>7</td>
<td>(1)</td>
<td>"*"</td>
<td>"*"</td>
<td>"*"</td>
<td>"*"</td>
<td>"*"</td>
<td>"*"</td>
<td>" "</td>
</tr>
<tr>
<td>8</td>
<td>(1)</td>
<td>"*"</td>
<td>"*"</td>
<td>"*"</td>
<td>"*"</td>
<td>"*"</td>
<td>"*"</td>
<td>"*"</td>
</tr>
</tbody>
</table>
Mallow's Cp statistic is equivalent to AIC in the case of
linear models with Gaussian errors

```r
all$cp  # Mallow's Cp

```

```r
all$bic

```
Credit Card Balance

Number of Variables

Cp

BIC

© Jiaming Mao
best model according to AIC

```r
coefficients(all.fit, 6)
```

<table>
<thead>
<tr>
<th></th>
<th>Income Limit</th>
<th>Rating Cards</th>
<th>Age</th>
<th>StudentYes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-493.7341870</td>
<td>0.1936914</td>
<td>1.0911874</td>
<td>18.2118976</td>
</tr>
<tr>
<td>Age</td>
<td>-0.6240560</td>
<td>425.6099369</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

best model according to BIC

```r
coefficients(all.fit, 4)
```

<table>
<thead>
<tr>
<th></th>
<th>Income Limit</th>
<th>Rating Cards</th>
<th>Cards</th>
<th>StudentYes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-499.7272117</td>
<td>0.2666445</td>
<td>23.1753794</td>
<td>429.6064203</td>
</tr>
<tr>
<td>Age</td>
<td>-7.8392288</td>
<td>425.6099369</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© Jiaming Mao
Credit Card Balance

Forward stepwise selection using AIC

null <- lm(Balance~1,credit)
full <- lm(Balance~.,credit)
fwd <- step(null, scope = formula(full), direction="forward")

Start: AIC=4905.56
Balance ~ 1
##
##
| Df | Sum of Sq | RSS | AIC |
|----|-----------|-----|-----|
+ Rating | 1 | 62904790 | 21435122 | 4359.6 |
+ Limit | 1 | 62624255 | 21715657 | 4364.8 |
+ Income | 1 | 18131167 | 66208745 | 4810.7 |
+ Student | 1 | 5658372 | 78681540 | 4879.8 |
+ Cards | 1 | 630416 | 83709496 | 4904.6 |
<none> | | | 84339912 | 4905.6 |
+ Gender | 1 | 38892 | 84301020 | 4907.4 |
+ Married | 1 | 2715 | 84337197 | 4907.5 |
+ Age | 1 | 284 | 84339628 | 4907.6 |
##

© Jiaming Mao
Step: AIC=4359.63
Balance ~ Rating
##
<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Income</td>
<td>1</td>
<td>10902581</td>
<td>10532541</td>
<td>4077.4</td>
</tr>
<tr>
<td>+ Student</td>
<td>1</td>
<td>5735163</td>
<td>15699959</td>
<td>4237.1</td>
</tr>
<tr>
<td>+ Age</td>
<td>1</td>
<td>649110</td>
<td>20786012</td>
<td>4349.3</td>
</tr>
<tr>
<td>+ Cards</td>
<td>1</td>
<td>138580</td>
<td>21296542</td>
<td>4359.0</td>
</tr>
<tr>
<td>+ Married</td>
<td>1</td>
<td>118209</td>
<td>21316913</td>
<td>4359.4</td>
</tr>
<tr>
<td><none></td>
<td></td>
<td></td>
<td>21435122</td>
<td>4359.6</td>
</tr>
<tr>
<td>+ Gender</td>
<td>1</td>
<td>16065</td>
<td>21419057</td>
<td>4361.3</td>
</tr>
<tr>
<td>+ Limit</td>
<td>1</td>
<td>7960</td>
<td>21427162</td>
<td>4361.5</td>
</tr>
</tbody>
</table>
Credit Card Balance

Step: AIC=4077.41
Balance ~ Rating + Income
##
##| Term | Df | Sum of Sq | RSS | AIC |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Student</td>
<td>1</td>
<td>6305322</td>
<td>4227219</td>
<td>3714.2</td>
</tr>
<tr>
<td>+ Married</td>
<td>1</td>
<td>95068</td>
<td>10437473</td>
<td>4075.8</td>
</tr>
<tr>
<td>+ Limit</td>
<td>1</td>
<td>94545</td>
<td>10437996</td>
<td>4075.8</td>
</tr>
<tr>
<td>+ Age</td>
<td>1</td>
<td>90286</td>
<td>10442255</td>
<td>4076.0</td>
</tr>
<tr>
<td><none></td>
<td></td>
<td></td>
<td>10532541</td>
<td>4077.4</td>
</tr>
<tr>
<td>+ Cards</td>
<td>1</td>
<td>2094</td>
<td>10530447</td>
<td>4079.3</td>
</tr>
<tr>
<td>+ Gender</td>
<td>1</td>
<td>948</td>
<td>10531593</td>
<td>4079.4</td>
</tr>
</tbody>
</table>
##
Step: AIC=3714.24

Balance ~ Rating + Income + Student

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Limit</td>
<td>1</td>
<td>194718</td>
<td>4032502</td>
<td>3697.4</td>
</tr>
<tr>
<td>+ Age</td>
<td>1</td>
<td>44620</td>
<td>4182600</td>
<td>3712.0</td>
</tr>
<tr>
<td><none></td>
<td></td>
<td></td>
<td>4227219</td>
<td>3714.2</td>
</tr>
<tr>
<td>+ Married</td>
<td>1</td>
<td>13083</td>
<td>4214137</td>
<td>3715.0</td>
</tr>
<tr>
<td>+ Gender</td>
<td>1</td>
<td>12168</td>
<td>4215051</td>
<td>3715.1</td>
</tr>
<tr>
<td>+ Cards</td>
<td>1</td>
<td>10608</td>
<td>4216611</td>
<td>3715.2</td>
</tr>
</tbody>
</table>
Credit Card Balance

Step: AIC=3697.37

Balance ~ Rating + Income + Student + Limit

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cards</td>
<td>1</td>
<td>166410</td>
<td>3866091</td>
<td>3682.5</td>
</tr>
<tr>
<td>Age</td>
<td>1</td>
<td>37952</td>
<td>3994549</td>
<td>3695.6</td>
</tr>
<tr>
<td><none></td>
<td></td>
<td></td>
<td>4032502</td>
<td>3697.4</td>
</tr>
<tr>
<td>Gender</td>
<td>1</td>
<td>13345</td>
<td>4019157</td>
<td>3698.0</td>
</tr>
<tr>
<td>Married</td>
<td>1</td>
<td>6660</td>
<td>4025842</td>
<td>3698.7</td>
</tr>
</tbody>
</table>
Credit Card Balance

Step: AIC=3682.52
Balance ~ Rating + Income + Student + Limit + Cards
##
| Df | Sum of Sq | RSS | AIC |
|----|-----------|------|------|
| + Age | 1 | 44472 | 3821620 | 3679.9 |
| <none> | | 3866091 | | 3682.5 |
| + Gender | 1 | 11350 | 3854741 | 3683.3 |
| + Married | 1 | 3121 | 3862970 | 3684.2 |
##
Credit Card Balance

Step: AIC=3679.89
Balance ~ Rating + Income + Student + Limit + Cards + Age
##
| Df | Sum of Sq | RSS | AIC |
##|----|-----------|------|------|
##<none> | | 3821620 | 3679.9 |
+ Gender | 1 | 10860.9 | 3810759 | 3680.7 |
+ Married | 1 | 5450.6 | 3816169 | 3681.3 |
##
Credit Card Balance

`coeftest(fwd)`

```r
##
## t test of coefficients:
##
##                                Estimate  Std. Error  t value Pr(>|t|)
## (Intercept)                    -493.734187  24.824765 -19.8888  < 2.2e-16 ***
## Rating                         
## Income                         0.233417   0.193691   1.2185   0.22647
## StudentYes                    425.609937  16.509565  25.7796  < 2.2e-16 ***
## Limit                         0.193691   0.032383   6.0023   2.507e-09 ***
## Cards                        18.211898   4.318650   4.2170   3.075e-05 ***
## Age                          -0.624056   0.291817  -2.1385   0.03309 *
##---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```
Credit Card Balance

```r
## Forward stepwise selection using BIC
n <- nrow(credit)
fwd <- step(null, scope = formula(full), direction="forward", k=log(n))

coeftest(fwd)
```

```
##
## t test of coefficients:
##
##               Estimate  Std. Error  t value     Pr(>|t|)
## (Intercept)  -526.155523  19.746614 -26.6454 < 2.2e-16 ***
## Rating       1.087901   0.486995  2.2339  0.02605   *
## Income      -7.874924   0.231455 -34.0236 < 2.2e-16 ***
## StudentYes  426.850146  16.574025  25.7542 < 2.2e-16 ***
## Limit        0.194409   0.032527   5.9768   5.099e-09 ***
## Cards       17.851731   4.334889   4.1182   4.656e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```
The Bias-Variance Trade-off

The goal of model selection is to choose the model (out of the set of candidate models) that can best balance the bias-variance tradeoff to achieve the smallest out-of-sample error.

In the case of linear models, we have:

$$E \left[(y - x' \hat{\beta})^2 \right] = \text{Var} (x' \hat{\beta}) + \left[\text{bias} (x' \hat{\beta}) \right]^2 + \text{Var} (e)$$

- The OLS estimate $\hat{\beta}^{LS}$ is unbiased: $E \left[\hat{\beta}^{LS} \right] = \beta^*$. Hence $\text{bias} (x' \hat{\beta}^{LS}) = E \left[x' \beta^* - x' \hat{\beta}^{LS} \right] = 0$. What about $\text{Var} (x' \hat{\beta}^{LS})$?
The Gauss-Markov Theorem

Note that $\hat{\beta}^{LS}$ is a linear function of Y: $\hat{\beta}^{LS} = (X'X)^{-1} X' Y = \sum_i w_i y_i$, where $w_i = (X'X)^{-1} x_i$.

Gauss-Markov Theorem

Under the assumption that

1. The true CEF is linear: $E[y|x] = x' \beta^*$
2. Homoskedasticity: $E \left[(e^*)^2 \middle| x \right] = \sigma^2$

The OLS estimator $\hat{\beta}^{LS}$ is **BLUE**: Best Linear Unbiased Estimator, in the sense that among all unbiased linear estimators (estimators that are linear functions of Y), $\hat{\beta}^{LS}$ has the smallest variance.
The Gauss-Markov Theorem

Under the assumptions of Gauss-Markov,

\[E \left[\left(y - x' \hat{\beta}^{LS} \right)^2 \right] = \text{Var} \left(x' \hat{\beta}^{LS} \right) + \sigma^2 \] \hspace{1cm} (3)

- The theorem says that if we have any other \textit{unbiased} linear estimator \(\hat{\beta} \), then \(\text{Var} \left(x' \hat{\beta}^{LS} \right) \leq \text{Var} \left(x' \hat{\beta} \right) \).

- But can we do better – reduce the prediction error – if we are willing to allow a little bias in exchange for a larger reduction in variance?
Exploring the Bias-Variance Trade-off

Classical statistics focuses on unbiased estimates. Modern statistics has explored the trade-off. We might sacrifice a little bias for a larger reduction in variance.
Exploring the Bias-Variance Trade-off

(3) \Rightarrow

\[E_{D,x} \left[\left(y - x' \widehat{\beta}^{LS} \right)^2 \right] \approx \frac{1}{N} \sum_{i=1}^{N} E_D \left[\left(y_i - x_i' \widehat{\beta}^{LS} \right)^2 \right] \]

\[= \frac{1}{N} \sum_{i=1}^{N} \text{Var} \left(x_i' \widehat{\beta}^{LS} \right) + \sigma^2 \]

\[= \frac{1}{N} \text{trace} \left(\text{Var} \left(X \widehat{\beta}^{LS} \right) \right) + \sigma^2 \]

\[\approx \frac{1}{N} \text{trace} \left(X (X'X)^{-1} X' \right) \sigma^2 + \sigma^2 \]

\[= \frac{1}{N} (1 + p) \sigma^2 + \sigma^2 \]

, i.e., the prediction error scales \textit{linearly} with the number of predictors \(p \).
Simulation 1

Simulation: \(N = 50, \ p = 30 \). \(y \sim \mathcal{N} (x'\beta^*, 1) \), where \(\beta^* \in \mathbb{R}^{30} \) with 10 “large” coefficients (between 0.5 and 1) and 20 “small” ones (between 0 and 0.3).
Each additional predictor adds the same amount of variance $\frac{\sigma^2}{N}$, regardless of whether its true coefficient is large or small (or zero).

So in this example, we are “spending” variance in trying to fit truly small coefficients—20 of them, out of 30 total.

We can do better by shrinking small coefficients towards zero, incurring some bias, so as to reduce the variance. Methods that do this are called shrinkage methods.
Exploring the Bias-Variance Trade-off

Simulation 1

- Linear regression
- Ridge regression

Prediction error

Amount of shrinkage
Simulation 1

Linear regression:

- Square bias \(\approx 0.006 \)
- Variance \(\approx 0.627 \)
- Prediction error \(\approx 1 + 0.006 + 0.627 = 1.633 \)

Ridge regression, at its best:

- Square bias \(\approx 0.077 \)
- Variance \(\approx 0.403 \)
- Prediction error \(\approx 1 + 0.077 + 0.403 = 1.48 \)
Ridge Regression

\[\hat{\beta}^R = \arg \min_{\beta} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\} \]

(4)

where \(\lambda \geq 0 \) is a tuning parameter that controls the strength of the penalty term, which has the effect of shrinking the estimates towards zero.

- \(\lambda = 0 \Rightarrow \hat{\beta}^R = \hat{\beta}^{LS}^4 \)
- \(\lambda = \infty \Rightarrow \hat{\beta}_1^R = \cdots = \hat{\beta}_p^R = 0^5 \)

\(\hat{\beta}^{LS} \) denotes the least square estimate.

\(\hat{\beta}_0 \) is not shrunk toward 0.
Ridge Regression

An equivalent way to write the ridge problem is:

\[\hat{\beta}^R = \arg \min_{\beta} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \]

subject to \(\sum_{j=1}^{p} \beta_j^2 \leq C \)

(4) is the Lagrangian form of (5). There is a one-to-one correspondence between \(\lambda \) in (4) and \(C \) in (5).
Least square estimates are **scale equivariant**: multiplying x_j by a constant c leads to a scaling of $\hat{\beta}_j$ by $1/c$. $\hat{\beta}_j x_j$ remains the same.

Ridge regression estimates are *not* scale equivariant. They can change substantially when multiplying a given predictor by a constant. Therefore, x_{ij} need to be *standardized* before applying ridge regression.

In addition, note that β_0 is not penalized: we do *not* shrink $\hat{\beta}_0$. Otherwise we could add some constant c to y and the solution would be different.
Let \(\tilde{x}_{ij} = \frac{x_{ij} - \bar{x}_j}{\sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_{ij} - \bar{x}_j)^2}} \), so that \(x_{ij} \)'s are both centered and standardized.

If we use \(\tilde{x}_{ij} \) as the regressors, then \(\hat{\beta}_0 = \bar{y} \)\(^6\) and we can estimate the rest of the \(\beta \)'s by a ridge regression without intercept:

\[
\hat{\beta}^R = \arg \min_{\beta} \left\{ \sum_{i=1}^{N} (\tilde{y}_i - \tilde{x}_i' \beta)^2 + \lambda \| \beta \|_2^2 \right\}
\]

(6)

, where \(\| . \|_2 \) denotes the \(\ell_2 \) norm, \(\tilde{y}_i = y_i - \bar{y} \), \(\tilde{x}_i = [\tilde{x}_{i1}, \ldots, \tilde{x}_{ip}]' \), and \(\beta = [\beta_1, \ldots, \beta_p]' \).

\(^6\)This is true as long as \(\tilde{x}_{ij} \) are centered.
Ridge Regression

(6) ⇒

\[\hat{\beta}^R = \left(\tilde{X}'\tilde{X} + \lambda I \right)^{-1} \tilde{X}'Y \] \hspace{1cm} (7)

, where \(I \) is the \(p \times p \) identity matrix, and \(\tilde{X} \) is centered and standardized.

In the case that \(\tilde{X} \) is orthonormal\(^7\), (7) ⇒

\[\hat{\beta}_j^R = \frac{\hat{\beta}_j^{LS}}{1 + \lambda} \] \hspace{1cm} (8)

\(^7\)so that \(\tilde{X}'\tilde{X} = I \)
Ridge Regression

To choose λ, we can treat λ as a hyperparameter and select its value via cross-validation:

- Given a grid of λ values, perform cross-validation on the training set to pick the λ for which the cross-validation error is smallest.
- Re-fit the model with the selected λ using all the training data.
- Benchmark the performance of the final fitted model using a test set.
Ridge Regression

Simulation 1

Example: visual representation of ridge coefficients

Recall our last example ($n = 50$, $p = 30$, and $\lambda = 1$; 10 large true coefficients, 20 small). Here is a visual representation of the ridge regression coefficients for $\lambda = 25$:

Ridge regression coefficients at $\lambda = 25$
Ridge Regression

Simulation 1

Graph showing the relationship between λ and various metrics such as linear prediction error, ridge prediction error, ridge bias squared, and ridge variance.
Simulation 2

Simulation: $N = 50, p = 30$. $y \sim \mathcal{N}(x' \beta^*, 1)$, where $\beta^* \in \mathbb{R}^{30}$ with all 30 coefficients between 0.5 and 1.
Ridge Regression

Simulation 2

![Graph showing the relationship between λ and various metrics including Linear pred err, Ridge pred err, Ridge bias^2, and Ridge var.](image-url)
```r
require(glmnet)
x <- model.matrix(Balance~.,credit)[,-1]  # no intercept
y <- credit$Balance
ridgefit <- glmnet(x,y,alpha=0,lambda=0.01)
coef(ridgefit)

## 9 x 1 sparse Matrix of class "dgCMatrix"

##
## (Intercept)  -479.7851081
## Income       -7.8002927
## Limit        0.2049782
## Rating       0.9251803
## Cards        18.9116337
## Age          -0.6364639
## GenderFemale -10.3247237
## StudentYes   426.0874930
## MarriedYes   -7.0597648
```
```r
ridgefit <- glmnet(x, y, alpha=0, lambda=1e10)
coef(ridgefit)
```

```r
## 9 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept)  5.200149e+02
## Income      2.777310e-07
## Limit       7.881306e-09
## Rating      1.178376e-07
## Cards       1.331034e-06
## Age         2.245918e-09
## GenderFemale 9.061130e-07
## StudentYes  1.820460e-05
## MarriedYes  -2.455471e-07
```
ridgefit <- glmnet(x, y, alpha=0) # automatically select a range of lambda

dim(coef(ridgefit))

[1] 9 100

c(ridgefit$lambda[1], ridgefit$lambda[100])

[1] 396562.69957 39.65627

ridgefit$lambda[50]

[1] 4154.453

c(coef(ridgefit)[, 50])

(Intercept) Income Limit Rating Cards
339.02562071 0.44648135 0.01505380 0.22506908 2.77187416
Age Gender Female Student Yes Married Yes
-0.05112386 1.76037503 39.44486798 -0.95049050

© Jiaming Mao
Credit Card Balance

![Graph 1: Standardized Coefficients vs. λ]

- **Income**
- **Limit**
- **Rating**
- **Student**

![Graph 2: Standardized Coefficients vs. $\|\hat{\beta}_\lambda^R\|_2 / \|\hat{\beta}\|_2$]

© Jiaming Mao
Credit Card Balance

Cross-Validation Error

Standardized Coefficients

© Jiaming Mao
The lasso⁸ is defined as:

\[\hat{\beta}^L = \arg \min_{\beta} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\} \] (9)

Equivalently,

\[\hat{\beta}^L = \arg \min_{\beta} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \] (10)

subject to \[\sum_{j=1}^{p} |\beta_j| \leq C \]

⁸acronym for: Least Absolute Selection and Shrinkage Operator. Not to be confused with wonder woman’s weapon of choice.
Centering and standardizing $x_{ij} \Rightarrow$

$$\hat{\beta}^L = \arg \min_{\beta} \left\{ \sum_{i=1}^{N} (\tilde{y}_i - \tilde{x}_i' \beta)^2 + \lambda \| \beta \|_1 \right\}$$ \hspace{1cm} (11)$$}

, where $\| . \|_1$ denotes the ℓ_1 norm, $\tilde{y}_i = y_i - \bar{y}$, $\tilde{x}_{ij} = \frac{x_{ij} - \bar{x}_j}{\sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_{ij} - \bar{x}_j)^2}}$, and $\beta = [\beta_1, \ldots, \beta_p]'$.
There is in general no closed-form solution to (11). In the case that X is orthonormal, we have:

$$\hat{\beta}^L = \begin{cases}
 \hat{\beta}^{LS} - \frac{\lambda}{2} & \text{if } \hat{\beta}^{LS} > \frac{\lambda}{2} \\
 \hat{\beta}^{LS} + \frac{\lambda}{2} & \text{if } \hat{\beta}^{LS} < -\frac{\lambda}{2} \\
 0 & \text{if } |\hat{\beta}^{LS}| \leq \frac{\lambda}{2}
\end{cases}$$
As with ridge regression, the lasso shrinks the coefficient estimates towards zero.

However, in the case of the lasso, the ℓ_2 penalty has the effect of forcing some of the coefficient estimates to be exactly equal to zero when the tuning parameter is sufficiently large.

Hence, the lasso performs variable selection. We say that the lasso yields sparse models — that is, models that involve only a subset of the variables.

As in ridge regression, selecting a good value of λ for the lasso is critical and is in practice done via cross-validation.
Contours of the error and constraint functions for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions, $|\beta_1| + |\beta_2| \leq C$ and $\beta_1^2 + \beta_2^2 \leq C$, while the red ellipses are the contours of the RSS.
The ridge regression and the lasso coefficient estimates for a simple setting with $N = p$ and X being orthonormal.
Credit Card Balance

```r
lassofit <- glmnet(x, y, alpha=1, lambda=0.01)
coef(lassofit)

# 9 x 1 sparse Matrix of class "dgCMatrix"
#
# s0
# (Intercept)  -479.5814236
# Income       -7.7997555
# Limit        0.2056525
# Rating       0.9149775
# Cards        18.9546633
# Age          -0.6358133
# GenderFemale -10.3038053
# StudentYes   426.0922168
# MarriedYes   -7.0184389
```

© Jiaming Mao
Credit Card Balance

```r
lassofit <- glmnet(x, y, alpha=1, lambda=100)
coef(lassofit)
```

```r
## 9 x 1 sparse Matrix of class "dgCMatrix"
## s0
## (Intercept)  -157.92073077
## Income .
## Limit  0.01822877
## Rating  1.64828689
## Cards .
## Age .
## GenderFemale .
## StudentYes  65.68634041
## MarriedYes .
```

© Jiaming Mao
lassofit <- glmnet(x, y, alpha=1) # automatically select a range of lambda

© Jiaming Mao
Soft vs. Hard Order Constraint

Consider a series of polynomial models: $\mathcal{H}_0 \subset \mathcal{H}_1 \subset \mathcal{H}_2 \subset \cdots$, where $\mathcal{H}_q = \{ h(x) = \beta_0 + \beta_1 x + \cdots + \beta_q x^q \}$, then estimating, say \mathcal{H}_2, is equivalent to estimating, say \mathcal{H}_{10}, with the constraint that $\beta_3 = \cdots = \beta_{10} = 0^9$.

Instead of imposing such “hard order constraints”, shrinkage methods impose “soft order constraints” by giving β a “budget” (e.g., $\| \beta \|_2^2 \leq C$ or $\| \beta \|_1 \leq C$) that have the effect of shrinking β toward 0.

In this sense, shrinkage can be thought of as selecting the final hypothesis from a continuous set of models rather than a discrete one (constant, linear, quadratic ...).

9Technically, this is only true if the polynomials are expressed as linear combinations of Legendre polynomials in x rather than consecutive powers of x.

© Jiaming Mao
Comparing the Lasso and Ridge Regression

Plots of squared bias (black), variance (green), and prediction error (purple) for the lasso (solid) and ridge (dashed) on a simulated data set with $p = 45$ and $n = 50$. All 45 predictors are related to the response.
Comparing the Lasso and Ridge Regression

Comparison of squared bias, variance and prediction error between the lasso (solid) and ridge (dashed). Now only two predictors in the simulated data set are related to the response.
Comparing the Lasso and Ridge Regression

Ten-fold cross-validation error for the lasso, applied to the simulated data set with 2 out of 45 predictors related to the response.
Supermarket Entry

Supermarket entry in geographical markets. For each market, data include:

- total population
- population density
- average income
- percentage population with college degree
- percentage population between 25 and 64 years old
- percentage married
- housing price
- unemployment rate
- crime rate
- tax rate
- etc.
Supermarket Entry

```
supermarket <- read.csv("Supermarket.csv")
supermarket$entry <- factor(supermarket$entry, levels=c(0,1),
                           labels=c("FALSE","TRUE"))
summary(supermarket$entry)

## FALSE TRUE
## 1119 881

head(supermarket,2)

## entry pop density gas unemp tax union housing crime publicTrans
## 1 FALSE 7064692 0.42 2.0 0.017 0.05 0 106 0.05 69
## 2 TRUE 2961394 0.39 4.9 0.039 0.07 1 121 0.07 47

## cost_insurance young adult old married college sexratio meanincome
## 1 2762 0.18 0.46 0.37 0.49 0.43 0.52 84603
## 2 1258 0.28 0.39 0.33 0.51 0.30 0.53 67249

## income25 income50 income75 cost_wage
## 1 55123 70779 116696 42930
## 2 47798 61374 87093 37225
```
Split into training and test data sets
n <- nrow(supermarket)
train <- sample(n,n/2)
supermarket.tr <- supermarket[train,]
supermarket.te <- supermarket[-train,]
#

Logistic Regression: Full Model
Fit on training data
logitfit <- glm(entry ~ .,supermarket.tr,family='binomial')
require(AER)
coeftest(logitfit)

z test of coefficients:
##
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.7197401841 1.9375965904 -0.37 0.71029
pop 0.0000000705 0.0000000239 2.94 0.00323 **
density 1.8151478321 0.4272158129 4.25 0.000021 ***
gas 0.0079951115 0.0721180090 0.11 0.91173
unemp -17.0951338342 13.6282037274 -1.25 0.20970
tax -5.7681705719 1.6654230134 -3.46 0.00053 ***
union -0.1975921113 0.1590731169 -1.24 0.21418
housing -0.0200346920 0.0071127694 -2.82 0.00485 **
crime 3.9358630077 2.4066828117 1.64 0.10197
publicTrans 0.0027691613 0.0049642106 0.56 0.57696
cost_insurance 0.0001071340 0.0000823863 1.30 0.25616
young -0.2318216399 1.3439223932 -0.17 0.86305
adult 0.6225533757 1.4354506835 0.43 0.66451
old NA NA NA NA
married 2.6820666759 0.7537144293 3.56 0.00037 ***
college 5.9639748862 2.3073285487 2.58 0.00974 **
sexratio -0.9159391203 1.5161018930 -0.60 0.54575
meanincome -0.0001205415 0.0000536641 -2.25 0.02469 *
income25 -0.0000492954 0.0001458362 -0.34 0.73535
income50 0.0000293917 0.0000164330 1.79 0.07368 .
income75 0.0000110611 0.0000097409 1.14 0.25616
cost_wage 0.0001705942 0.0002028866 0.84 0.40044

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

© Jiaming Mao
Predict on test data

```r
p = predict(logitfit, supermarket.te, type="response")
logitpred = as.factor(p > 0.5)
table(logitpred, supermarket.te$entry)
```

```r
## logitpred FALSE TRUE
## FALSE 424 193
## TRUE 146 237

logiterr <- 1 - mean(logitpred == supermarket.te$entry)
logiterr
```

```r
## [1] 0.34
```
Logistic Regression: Lasso

Fit on training data

```r
require(glmnet)

x <- model.matrix(entry ~ ., supermarket.tr)[,-1]  # no intercept
y <- supermarket.tr$entry

lassofit.all <- glmnet(x, y, alpha = 1, family = "binomial")

cv.lasso <- cv.glmnet(x, y, alpha = 1, family = "binomial")  # cross-validation

lambda.star <- cv.lasso$lambda.min  # lambda associated with min cross-validation error

# Alternatively: lambda.star <- cv.lasso$lambda.1se

# now fit Lasso with optimal lambda on the entire training data set

lassofit.star <- glmnet(x, y, alpha = 1, lambda = lambda.star, family = "binomial")
```

© Jiaming Mao
```r
plot(lassofit.all, xvar="lambda")
```
`plot(cv.lasso)`

Supermarket Entry

© Jiaming Mao
```r
coef(lassofit.star)

## 22 x 1 sparse Matrix of class "dgCMatrix"
##
## s0
## (Intercept)  -0.913802643
## pop           0.000000057
## density      1.484797053
## gas           .
## unemp        -1.909544384
## tax          -4.789096976
## union        -0.098232058
## housing      -0.023352708
## crime        2.515947491
## publicTrans  0.001273307
## cost_insurance 0.000054071
## young         .
## adult         .
## old           .
## married       2.212484918
## college       2.638237373
## sexratio      .
## meanincome    .
## income25      .
## income50      .
## income75      .
## cost_wage     .
```
Predict on test data

```r
newx <- model.matrix(entry ~ ., supermarket.te)[,-1]
lassopred <- predict(lassofit.star, newx, type="class")
table(lassopred, supermarket.te$entry)
```

```
# lassopred FALSE TRUE
# FALSE 440 188
# TRUE 130 242
```

```r
lassoerr <- 1 - mean(lassopred == supermarket.te$entry)
lassoerr
```

```
# [1] 0.32
```
KNN

Fit on training data
use (repeated) cross-validation to choose optimal K

```r
require("caret")
knnfit <- train(entry ~ ., data=supermarket.tr, method="knn", 
               trControl=trainControl(method="repeatedcv",repeats=3),
               preProcess=c("center","scale"),tuneLength = 50)
plot(knnfit)
```
#Neighbors

Accuracy (Repeated Cross-Validation)

- 0.59
- 0.60
- 0.61
- 0.62
- 0.63
- 0.64

© Jiaming Mao
Predict on test data

```r
knnpred <- predict(knnfit, supermarket.te)
table(knnpred, supermarket.te$entry)
```

```r
## knnpred FALSE TRUE
## FALSE 426 227
## TRUE 144 203
```

```r
knnerr <- 1 - mean(knnpred == supermarket.te$entry)
knnerr
```

```r
## [1] 0.37
```
Let $CV(\lambda)$ denote the cross-validation error at λ. Let $SE(\lambda)$ be its standard error10. Let $\lambda_{min} = \arg \min_{\lambda} CV(\lambda)$.

Instead of choosing λ_{min}, the **one standard error rule** chooses the largest λ whose $CV(\lambda)$ is within one standard error of $CV(\lambda_{min})$. i.e., λ^{1se} is the largest λ such that

$$CV(\lambda^{1se}) \leq CV(\lambda_{min}) + SE(\lambda_{min})$$

Idea: “All else equal (up to one standard error), go for the simpler (more regularized) model”

10i.e., $SE(\lambda)$ is the standard deviation of $CV(\lambda)$ generated by repeated cross-validations.
Most traditional statistical techniques for regression and classification are intended for the low-dimensional settings in which $N \gg p$.

Problems with $p > N$ are often referred to as high-dimensional. Classical approaches such as least squares linear regression are not appropriate in this setting.
Considerations in High Dimensions

Left: Least squares regression in the low-dimensional setting. Right: Least squares regression with $N = 2$ observations and two parameters to be estimated.
Considerations in High Dimensions

\[R^2, \text{ training MSE, and test MSE on a sample with } N = 20 \text{ observations, as more (unrelated) features are added to the model.} \]
Considerations in High Dimensions

- In high dimensions, even linear models are *too flexible*.
- Information criteria such as AIC and BIC are *not* appropriate.
- When p is large, multicollinearity problem can be extreme.
 - This means that we can never know exactly which variables (if any) truly are predictive of the outcome, and we can never identify the *best* coefficients for use in the regression. At most, we can hope to assign large regression coefficients to variables that are correlated with the variables that truly are predictive of the outcome.
Shrinkage is a form of **regularization**: methods that constrain the complexity of learning algorithms in order to avoid overfitting and improve out-of-sample error.

In least squares regression, given a model \mathcal{H}, we choose $g \in \mathcal{H}$ to minimize the in-sample error E_{in}. This is called **empirical risk minimization** (ERM).

Regularization methods choose g by solving the following problem:

$$\min_{h \in \mathcal{H}} E_{in}(h)$$

subject to $\Omega(h) \leq C$,

where $\Omega(h)$ is a measure of the complexity of h and is called a **regularizer**\(^{11}\).

\(^{11}\)When \mathcal{H} is parametrized by β, $\Omega(h)$ can be written as $\Omega(\beta)$.

© Jiaming Mao
Regularization

- Equivalently, (12) can be written as

\[
\min_{h \in \mathcal{H}} \{ E_{in}(h) + \lambda \Omega(h) \}
\]

(13)

\[
= \min_{h \in \mathcal{H}} E_{aug}(h)
\]

, where we define **augmented error** \(E_{aug}(h) \equiv E_{in}(h) + \lambda \Omega(h) \).

- (12) is called the **Ivanov form** and expresses regularization as constrained ERM.

- (13) is called the **Tikhonov form** and expresses regularization as penalized ERM.
Regularization as Constrained ERM

- Data
- Target
- Fit

Free fit vs restrained fit
Regularization as Constrained ERM

Minimizing $E_{in}(\beta) + \lambda \| \beta \|^2_2$ for different λs

- $\lambda = 0$
- $\lambda = 0.0001$
- $\lambda = 0.01$
- $\lambda = 1$

overfitting → → → → underfitting
Regularization

Bias-Variance Decomposition

\[f : [-1, 1] \rightarrow \mathbb{R} \quad f(x) = \sin(\pi x) \]

Only two training examples! \[N = 2 \]

Two models used for learning:

\[\mathcal{H}_0: \ h(x) = b \]

\[\mathcal{H}_1: \ h(x) = ax + b \]

Which is better, \(\mathcal{H}_0 \) or \(\mathcal{H}_1 \)?

\[f \]
Bias-Variance Decomposition

\[\mathcal{H}_0 \]

\[\bar{g}(x) \]

\[\sin(\pi x) \]

bias = 0.50 \quad \text{var} = 0.25

\[\mathcal{H}_1 \]

\[\bar{g}(x) \]

\[\sin(\pi x) \]

bias = 0.21 \quad \text{var} = 1.69
Regularization

Bias-Variance Decomposition

without regularization

with regularization
Regularization

Bias-Variance Decomposition

Without regularization

\[\bar{g}(x) \sin(\pi x) \]

\[\begin{align*}
 \text{bias} &= 0.21 \\
 \text{var} &= 1.69
\end{align*} \]

With regularization

\[\bar{g}(x) \sin(\pi x) \]

\[\begin{align*}
 \text{bias} &= 0.23 \\
 \text{var} &= 0.33
\end{align*} \]
E_{aug} is a better proxy for E_{out} than E_{in}.

VC generalization bound:

$$E_{\text{out}} (h) \leq E_{\text{in}} (h) + \mathcal{O} \left(\sqrt{d_{\text{VC}} (\mathcal{H}) \frac{\ln N}{N}} \right)$$

Augmented error:

$$E_{\text{aug}} (h) = E_{\text{in}} (h) + \lambda \Omega (h)$$
Choosing a Regularizer

Simulated data set with the target function being a 15^{th} degree polynomial.

Left: $\Omega (\beta) = \sum_{j=0}^{15} \beta_j^2$; Right: $\Omega (\beta) = \sum_{j=0}^{15} j \beta_j^2$
Choosing a Regularizer

L_0 regularizer: \[\Omega (\beta) = \| \beta \|_0 = \sum_j I\{ \beta_j \neq 0 \} \]

L_1 regularizer: \[\Omega (\beta) = \| \beta \|_1 = \sum_j |\beta_j| \]

L_2 regularizer: \[\Omega (\beta) = \| \beta \|_2^2 = \sum_j \beta_j^2 \]

L_q regularizer: \[\Omega (\beta) = \| \beta \|_q^q = \sum_j |\beta_j|^q \]

$q = 4 \hspace{1cm} q = 2 \hspace{1cm} q = 1 \hspace{1cm} q = 0.5 \hspace{1cm} q = 0.1$

Contours of constant value of L_q regularizer for different values of q
Elastic Net

In the presence of highly correlated features, the results of the lasso can be arbitrary and unstable.

- Target function: $y = f(x) = 4x_1$; Model: $h(x) = w_1x_1 + w_2x_2$
- Suppose $x_1 = x_2$, then any $h(x)$ with $w_1 + w_2 = 4$ minimizes E_{in}, but different regularizers penalize them differently:

<table>
<thead>
<tr>
<th>w_1</th>
<th>w_2</th>
<th>$|w|_1$</th>
<th>$|w|_2^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>-1</td>
<td>5</td>
<td>6</td>
<td>26</td>
</tr>
</tbody>
</table>

- $\|w\|_1$ does not discriminate (as long as all have same sign)
- $\|w\|_2^2$ minimized when w is spread equally
Correlated Features (cont.)

Suppose the line $w_1 + w_2 = 2p^2 + 3.5$ corresponds to the empirical risk minimizer. Empirical risk increases as we move away from these parameter settings.

Intersection of $w_1 + w_2 = 2p^2$ and then orbital ridge solutions.

Note that $w_1 = w_2$ at the solution.
Suppose the line $w_1 + w_2 = 5.5$ corresponds to the empirical risk minimizer. Intersection of $w_1 + w_2 = 2$ and then the ball $k w_k^1 \leq 2$ is a solution.

Note that the solution set is $\{(w_1, w_2) : w_1 + w_2 = 2, w_1, w_2 > 0\}$.
The **elastic net** combines the lasso and ridge penalties:

\[
\Omega (\beta) = \alpha \|\beta\|_1 + (1 - \alpha) \|\beta\|_2^2
\]

\[\alpha = 0.2\]

The elastic net shrinks together the coefficients of correlated features like ridge regression, while encouraging sparse solutions like the lasso.
Elastic Net

Simulation:

\[z_1, z_2, \epsilon_1, \ldots, \epsilon_6, e \sim i.i.d. \mathcal{N}(0, 1) \]

\[y \sim 3z_1 - 1.5z_2 + 2e \]

\[x_j = \begin{cases}
 z_1 + 0.2\epsilon_j & j = 1, 2, 3 \\
 z_2 + 0.2\epsilon_j & j = 4, 5, 6
\end{cases} \]
Elastic Net

```r
# generate data
require(MASS)
require(glmnet)
n = 100
z1 = rnorm(n)
z2 = rnorm(n)
e = mvrnorm(n,mu=rep(0,6),Sigma=diag(6))
x1 = z1 + e[,1:3]/5
x2 = z2 + e[,4:6]/5
x = cbind(x1,x2)
y = 3*z1 - 1.5*z2 + 2*rnorm(n)

# lasso
lassofit = glmnet(x,y,alpha=1)

# elastic net
enetfit = glmnet(x,y,alpha=0.3) # 30% L1 and 70 %L2
```
Elastic Net

Lasso Paths

Elastic-Net Paths

© Jiaming Mao
Bayesian Interpretation of Regularization

The lasso and ridge regression estimates correspond to the maximum a posteriori (MAP) estimates with Laplace and Gaussian priors\(^\text{12}\).

- Ridge regression is the posterior mode\(^\text{13}\) for \(\beta\) under a normal prior with mean zero.
- The lasso is the posterior mode for \(\beta\) under a double-exponential (Laplace) prior with mean zero.
- The standard deviation of the prior distribution corresponds to regularization strength (\(\lambda\)).

\(^{12}\)See Appendix I for a simple derivation
\(^{13}\)as well as the posterior mean
Bayesian Interpretation of Regularization

The maximum à posteriori (MAP) estimate is defined as

$$
\hat{\theta}_{\text{MAP}} = \arg \max_\theta p(\theta | D) = \arg \max_\theta p(D | \theta) p(\theta)
$$

, i.e., $\hat{\theta}_{\text{MAP}}$ is the mode of the posterior distribution of θ.

- Given a uniform prior $p(\theta) = \text{constant}$, $\hat{\theta}_{\text{MAP}} = \hat{\theta}_{\text{MLE}}$\(^{14}\).

\(^{14}\)In this case, the Bayesian estimate equals the frequentist estimate because the prior is uninformative (hence uniform priors are sometimes called uninformative priors). As a result, D becomes the only source of our knowledge for θ, as in the frequentist approach. If $p(\theta) = \text{constant}$ over the entire real line, then it is also an improper prior, since it does not integrate to one.
Bayesian Interpretation of Regularization

What about prior knowledge? We know the coin is “close” to 50-50. What can we do now? The Bayesian way… Rather than estimating a single θ, we obtain a distribution over possible values of θ. Before data and After data.
Bayesian Interpretation of Regularization

Left: Gaussian prior for Ridge; Right: Laplace prior for the Lasso

© Jiaming Mao
From a Bayesian perspective, regularization amounts to the use of *informative priors*, where we introduce our knowledge or belief about the target function in the form of priors, and use them to “regulate” the behavior of the hypothesis we choose15.

15Recall that in choosing a model, our choice should be based both on our belief about the true target function *and* on the amount of data we have (matching model complexity to data sources). Similarly, the choice of regularizers is based both on our belief about the target function (such as its smoothness), and the necessity of tempering down the variability in our estimates when p is large relative to N.
A smoothing spline is a function $g(x)$ that solves the following problem:

$$\min_h \left\{ \sum_{i=1}^{N} (y_i - h(x_i))^2 + \lambda \int [h''(t)]^2 \, dt \right\}$$

(14)

, where $\lambda \geq 0$ is a tuning parameter.

- The regularizer $\Omega(h) = \int [h''(t)]^2 \, dt$ is a roughness penalty. Hence λ regulates the smoothness of the spline.
- $\lambda = 0 : g(x)$ interpolates every (x_i, y_i).
- $\lambda \to \infty : g(x)$ becomes the linear least squares line.
The solution to (14) is a natural cubic spline with knots at every x_i.\(^{16,17,18}\)

Recall that the least squares solution for natural cubic splines is

\[
\hat{\beta}^{LS} = (\Phi'\Phi)^{-1} \Phi' Y,
\]

where $\Phi(x)$ is the set of basis functions for natural cubic splines. Solving (14) gives the shrinkage solution:

\[
\hat{\beta} = (\Phi'\Phi + \lambda \Psi)^{-1} \Phi' Y
\]

, where Ψ is an $N \times N$ matrix with $\Psi_{ij} = \int \Phi_i''(t) \Phi_j''(t) \, dt$.

\(^{16}\)Hence, we no longer have to choose knot placement!

\(^{17}\)See Appendix II for proof.

\(^{18}\)More generally, penalizing the squared k^{th} derivative leads to a natural spline of degree $2k - 1$.
Wage Profile

```r
fit = smooth.spline(Wage$age, Wage$wage)
```
Appendix I: Gaussian Prior and L2 Regularization

Consider a normal linear model with Gaussian prior\(^{19}\):

\[
\beta_j \sim \mathcal{N}(0, \tau^2), \quad j = 0, \ldots, p
\]

\[
y \sim \mathcal{N}(\beta' x, \sigma^2)
\]

Then we have:

\[
\hat{\theta}_{\text{MAP}} = \arg \max_{\beta} \left\{ \left(\prod_{i=1}^{N} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(y_i - \beta' x_i)^2}{2\sigma^2}} \right) \left(\prod_{j=1}^{p} \frac{1}{\tau \sqrt{2\pi}} e^{-\frac{\beta_j^2}{2\tau^2}} \right) \right\} \quad (15)
\]

\(^{19}\) Assume we know \(\sigma\).
Appendix I: Gaussian Prior and L2 Regularization

(15) \Rightarrow

\hat{\theta}_{MAP} = \arg\max_\beta \left\{ \log \left(\prod_{i=1}^{N} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(y_i - \beta'x_i)^2}{2\sigma^2}} \right) + \log \left(\prod_{j=1}^{p} \frac{1}{\tau \sqrt{2\pi}} e^{-\frac{\beta_j^2}{2\tau^2}} \right) \right\}

= \arg\max_\beta \left\{ - \sum_{i=1}^{N} \frac{(y_i - \beta'x_i)^2}{2\sigma^2} - \sum_{j=0}^{p} \frac{\beta_j^2}{2\tau^2} \right\}

= \arg\min_\beta \left\{ \sum_{i=1}^{N} (y_i - \beta'x_i)^2 + \lambda \sum_{j=0}^{p} \beta_j^2 \right\}

, where \lambda = \frac{\sigma^2}{\tau^2}. \quad 20

\text{Hence smaller values of } \tau \text{ correspond to stronger regularization}
Appendix I: Laplace Prior and L1 Regularization

Consider a normal linear model with Laplace prior\(^{21}\):

\[
\beta_j \sim \text{Laplace}(\mu, b), \quad j = 0, \ldots, p
\]

\[
y \sim \mathcal{N}(\beta'x, \sigma^2)
\]

Then we have:

\[
\hat{\theta}_{\text{MAP}} = \arg \max_\beta \left\{ \left(\prod_{i=1}^{N} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(y_i - \beta'x_i)^2}{2\sigma^2}} \right) \left(\prod_{j=1}^{p} \frac{1}{2b} e^{-\frac{|\beta_j|}{2b}} \right) \right\}
\]

\[
= \arg \min_\beta \left\{ \sum_{i=1}^{N} (y_i - \beta'x_i)^2 + \lambda \sum_{j=0}^{p} |\beta_j| \right\}
\]

where \(\lambda = \frac{\sigma^2}{b}\)^{22}.\(^{21}\)

Assume we know \(\sigma\).\(^{22}\)

Smaller values of \(b\) correspond to stronger regularization
Appendix II: Smoothing Splines

Theorem

Let h be any differentiable function on $[a, b]$ for which $h(x_i) = z_i$ for $i = 1, \ldots, n$. Suppose $n > 2$, and that g is the natural cubic spline interpolant to the values z_1, \ldots, z_n at points x_1, \ldots, x_n with $a < x_1 < \cdots < x_n < b$. Then $\int (h'')^2 \geq \int (g'')^2$ with equality if and only if $h = g$.
Appendix II: Smoothing Splines

Proof.

Let $\ell = h - g$. So $\ell(x_i) = 0$ for $i = 1, \ldots, n$.

$$
\int (h^\prime\prime)^2 = \int (g^\prime\prime + \ell^\prime\prime)^2 = \int (g^\prime\prime)^2 + 2 \int g^\prime\prime \ell^\prime\prime + \int (\ell^\prime\prime)^2 \tag{16}
$$

Since

$$
\int_a^b g^\prime\prime (x) \ell^\prime\prime (x) \, dx = g^\prime\prime (x) \ell^\prime (x) \bigg|_a^b - \int_a^b \ell^\prime (x) g^{(3)} (x) \, dx
$$

$$
= - \sum_{i=1}^{n-1} g^{(3)} (x_j^+) \int_{x_j}^{x_{j+1}} \ell^\prime (x) \, dx
$$

$$
= - \sum_{i=1}^{n-1} g^{(3)} (x_j^+) (\ell (x_{j+1}) - \ell (x_j)) = 0
$$

, \quad (16) \Rightarrow \int (h^\prime\prime)^2 \geq \int (g^\prime\prime)^2.$$

© Jiaming Mao
Part of this lecture is adapted from the following sources:

- Blei, D. M. *Interacting with data*. Lecture at Princeton University, retrieved on 2017.01.01. [link]
- Dave, R. *Advanced Scientific Computing*, Lecture at Harvard Institute for Applied Computational Science, retrieved on 2019.01.01. [link]
Liang, F. *Statistical Learning: Nonparametric and Regularization Approaches*, Lecture at Duke University, retrieved on 2019.01.01. [link]

Rosenberg, D. S. *Machine Learning and Computational Statistics*, Lecture at NYU Center for Data Science, retrieved on 2019.01.01. [link]

Tibshirani, R. *Data Mining*, Lecture at Carnegie Mellon University, retrieved on 2017.01.01. [link]