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Model Assessment and Model Selection

Model assessment: evaluating a model’s performance

Model selection: choosing the model with the best performance

Both model assessment and model selection require estimate of a
model’s out-of-sample error.
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Model Assessment

To evaluate the performance of a model H, we can randomly split our
data into two parts:

Training set: used to fit the model (select g from H)

Test set: used to see how good the fit is (evaluate g ’s performance)
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Training versus Testing

Training: Pr (|Ein (g)− Eout (g)| > ε) ≤ 4mH (2N) e−
1
8 ε

2N (1)

Testing: Pr (|Etest (g)− Eout (g)| > ε) ≤ 2e−2ε2N (2)

The generalization bound for test error Etest (g) is much tighter.

The test set is not biased, whereas the training set has an optimistic
bias, since it is used to choose a hypothesis that looks good on it.

The price for a test set is fewer data for training.
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Model Selection

To choose the best model H∗ among a set of models
H = {H0,H1, . . . ,Hn}, we can randomly split our data into three parts: a
training set, a test set, and a validation (hold-out) set:
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Model Selection

Then follow the following steps:

1 Fit each model Hi on the training set and obtain gi for i = 0, 1, . . . , n

2 Use the validation set to evaluate the performance of each gi and
select the hypothesis g∗ ∈ H∗ with the smallest validation-set error –
H∗ is our selected model.

3 Combine the training set and the validation set. Refit H∗ on this
larger set1 to obtain g∗∗ – this is our final selected hypothesis.

4 Assess the performance of g∗∗ on the test set.

This is called the validation set approach.

1which corresponds to the training set in model assessment, since once we have
picked a model – here H∗ – what is left to do is model assessment.
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Model Selection
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Model Selection

A validation set is needed because we cannot use the test set to both
help select the best model and assess the performance of the final
hypothesis.

Once a data set has been used in the learning process, it is
“contaminated” – it obtains an optimistic bias, and the error
calculated on the data set no longer has the tight bound in (2).
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Model Selection

Often times, the different models in H can be indexed by a
complexity parameter λ, which we call a hyperparameter. Choosing
the best model amounts to finding the best value of λ.

I For example, if we are choosing among polynomial models of varying
degrees, then λ is the degree of the polynomial.

Using the validation set approach, the training set is used to fit each
model with a given λ, the validation set is the set on which λ itself is
fit, while the test set is used to estimate the true out-of-sample
performance of the final hypothesis.
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MPG and Horsepower
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MPG and Horsepower

Want to compare linear vs higher-order polynomial terms in a linear
regression of miles per gallon (MPG) on horsepower on a data set of
392 vehicles.

Suppose there exists an independent test data set somewhere else, so
we only need this data set for model selection (without assessment).
Then we can randomly split the 392 observations into two sets, a
training set containing 196 of the data points, and a validation set
containing the remaining 196 observations.
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MPG and Horsepower

require(ISLR) # contains the data set 'Auto'
attach(Auto)
train <- sample(392,196) # draw a random subset from the sample
fit <- lm(mpg ~ horsepower, subset=train)
yhat <- predict(fit,Auto)
V.e <- (mpg - yhat)[-train] # validation set error
V.MSE <- mean(V.e^2) # validation set MSE
V.MSE

## [1] 25.72651
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MPG and Horsepower

V.MSE <- rep(0,5)
for (i in 1:5){

fit <- lm(mpg ~ poly(horsepower,i), subset=train)
V.e <- (mpg - predict(fit,Auto))[-train]
V.MSE[i] <- mean(V.e^2)

}
V.MSE

## [1] 25.72651 20.43036 20.38533 20.30902 19.79689
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MPG and Horsepower
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Left: Validation-set MSE for a single split into training and validation data sets.
Right: The validation method was repeated ten times, each time using a different

random split.
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The Validation Set Approach

Problems:

Results can be highly variable, depending on which observations are
included in the training set and which are in the validation set.

The larger the validation set is, the smaller the training set has to be,
hence the better the validation set errors are as estimates of true
out-of-sample errors, but the poorer the model fits produced by the
training set are.

Conversely, the smaller the validation set, the better the model fits on
the training set, but the poorer the validation set errors are as
estimates of true out-of-sample errors.
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Cross Validation

The results of the validation set approach are variable due to the
whims of a single random split. Thus, it might be better to randomly
split the data multiple times and average the results – this is what
cross-validation does.

Like the bootstrap, cross-validation is a resampling method: these
methods involve repeatedly drawing samples from a training set and
refitting a model of interest on each sample in order to obtain
additional information about the fitted model.
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Cross Validation

The cross-validation approach splits the original data into two parts:
a training set and a test set, with no separate validation set.

The training set is then randomly divided into K equal-sized folds.

In turn, training is performed on K − 1 folds (combined), and the
remainder fold is used for evaluation. The K evaluation results are
then averaged to produce an estimate of a model’s out-of-sample
error.
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Cross Validation

source
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https://scikit-learn.org/stable/modules/cross_validation.html#cross-validation


Cross Validation

The K−fold cross-validation error of a model H is

CV(K) (H) = 1
K

K∑
k=1

E (k)
in

(
g (−k) (H)

)

, where g (−k) (H) is the hypothesis selected by fitting H on the training
data with the kth fold removed, and E (k)

in (.) is the error calculated on the
kth fold data2.

2Note that g (−k) (H) can be different for different k, hence the cross-validation error
is obtained by averaging over the performance of different hypotheses.
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Cross Validation

Setting K = N yields the leave-one out cross-validation (LOOCV)
error:

CV(N) (H) = 1
N

N∑
i=1

E (i)
in

(
g (−i) (H)

)
, in which case g (−i) (H) is the result of fitting H on the entire training
set with only the i th data point removed, and E (i)

in (.) is the difference
between the prediction made by g (−i) (H) on the i th data point and its
true value, according to the loss function used.
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LOOCV
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MPG and Horsepower

## LOOCV
require(boot)
LOOCV.MSE <- rep(0,5)
for (i in 1:5){

fit <- glm(mpg ~ poly(horsepower,i))
LOOCV.MSE[i] <- cv.glm(Auto,fit)$delta[1]

}
LOOCV.MSE

## [1] 24.23151 19.24821 19.33498 19.42443 19.03321
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MPG and Horsepower

## 10-fold CV
CV.MSE <- rep(0,5)
for (i in 1:5){

fit <- glm(mpg ~ poly(horsepower,i))
CV.MSE[i] <- cv.glm(Auto,fit,K=10)$delta[1]

}
CV.MSE

## [1] 24.17328 19.27789 19.43292 19.42324 19.03107
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MPG and Horsepower
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Left: The LOOCV error curve. Right: 10-fold CV was run nine separate times,
each with a different random split of the data into ten folds. The figure shows the

nine slightly different CV error curves.
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Choice of K

When N is large, LOOCV can be computationally expensive: need to
fit the model N times!

LOOCV gives almost unbiased estimate of the out-of-sample error,
since its training set contains almost the entire data set.

However, the LOOCV estimate has high variance: when we perform
LOOCV, we are in effect averaging the outputs of N fitted models,
each of which is trained on an almost identical set of observations.
Therefore, these outputs are highly positively correlated with each
other.

There exists a bias-variance tradeoff: when K is small, bias is high and
variance is low. When K is large, bias is low and variance is high.

Rule of thumb: K = 5 or K = 10.
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Cross-Validation for Regression
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Left: target function (black), linear fit (orange), smoothing spline fits (blue &
green). Right: training error (grey), prediction error (red), Var(e) (dashed).
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Cross-Validation for Regression
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Left: target function (black), linear fit (orange), smoothing spline fits (blue &
green). Right: training error (grey), prediction error (red), Var(e) (dashed).
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Cross-Validation for Regression
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Left: target function (black), linear fit (orange), smoothing spline fits (blue &
green). Right: training error (grey), prediction error (red), Var(e) (dashed).
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Cross-Validation for Regression
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True and estimated prediction error for the simulated data sets. True prediction
error (blue), LOOCV estimate (black dashed), 10-fold CV estimate (orange).

Crosses indicate the minimum of each of the error curves.
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Cross-Validation for Classification
Degree=1
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Two-dimensional classification data. Purple dashed: the Bayes decision boundary;
Black: estimated decision boundaries from linear (left) and quadratic (right)

logistic regressions.
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Cross-Validation for Classification
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Two-dimensional classification data. Purple dashed: the Bayes decision boundary;
Black: estimated decision boundaries from cubic (left) and quartic (right) logistic

regressions.
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Cross-Validation for Classification
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Cross-Validation for Classification
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Note on Cross-Validation

Note
In choosing the K folds at random, we are assuming that (xi , yi ) are
independently drawn from the underlying population p (x , y), i.e., our data
D = {(x1, y1) , . . . , (xN , yN)} constitutes a random sample.

This would not be true in structured problems where (xi , yi ) are not
independent – for example, when D is time-series dataa.

aSee here for discussions on cross-validation for time series data.
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Alternatives to CV: Information Criteria

Suppose for dependent variable y , we have two potential predictors, x1 and
x2. If we limit our attention to linear models without interactions, we
could fit the following four models:

Model A: yi = β0 + ei

Model B: yi = β0 + β1xi1 + ei

Model C: yi = β0 + β2xi2 + ei

Model D: yi = β0 + β1xi1 + β2xi2 + ei

Model A is the null model, which contains no predictors.
Model D is the full model, which contains all potential predictors.

© Jiaming Mao



Alternatives to CV: Information Criteria

We could use CV to select the best model. Alternatively, we can use
information criteria for model selection. These are metrics that make
adjustment to the training error in order to account for the bias due to
overfitting.

Akaike’s Information Criterion (AIC)

AIC = −2 logL+ 2p = Deviance + 2p

, where L is the value of the likelihood function3, and p is the number of
parameters.

Bayesian Information Criterion (BIC)

BIC = −2 logL+ p logN = Deviance + p logN

, where N is the number of data points.
3achieved at the maximum-likelihood estimate.
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Alternatives to CV: Information Criteria

For both AIC and BIC, smaller values are better. We can use them for
model selection by choosing the model with the minimum AIC or BIC.

The term 2p in AIC and p logN in BIC can be regarded as penalty
terms that favor simpler models over more complicated ones.

Both AIC and BIC have theoretical justifications that rely on
asymptotic arguments.

Since logN > 2 for N > 7, BIC generally increases with p faster than
AIC. Thus BIC tends to lead to the selection of smaller models than
AIC.
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MPG and Horsepower

require(foreach)
foreach (i = 1:5) %do% {

model <- lm(mpg ~ poly(horsepower,i))
c(AIC(model), BIC(model))

}

## [[1]]
## [1] 2363.324 2375.237
##
## [[2]]
## [1] 2274.354 2290.239
##
## [[3]]
## [1] 2275.531 2295.388
##
## [[4]]
## [1] 2276.108 2299.936
##
## [[5]]
## [1] 2268.663 2296.462
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Subset Selection

In general, given p potential predictors in a linear model, we can use
CV or information criteria to choose the best subset of predictors.
This is also called variable selection.

However, given p potential predictors, there are 2p possible models –
each involves a subset of the p predictors. Comparing all of them
becomes computationally infeasible when p is large.

Forward stepwise selection is a computationally efficient alternative
that begins with the null model, and then adds predictors
one-at-a-time.
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Subset Selection

Forward Stepwise Selection
1 LetM0 denote the null model.
2 Fit all univariate models. Choose the one with the best in-sample fit

(smallest RSS, highest R2) and add that variable – say x(1)– toM0.
Call the resulting modelM1.

3 Fit all bivariate models that include x(1): y ∼ β0 + β(1)x(1) + βjxj ,
and add xj from the one with the best in-sample fit toM1. Call the
resulting modelM2.

4 Continue until your model selection rule (cross-validation error, AIC,
BIC) is lower for the current model than for any of the models that
add one variable.
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Subset Selection

Similarly, we can also do backward stepwise selection: start with
the full model and remove predictors one-at-a-time.

Forward is in general better than backward:
I The full model can be expensive to fit, while the null model is usually

available in closed form.
I The full model fit has high variance (because it is usually overfit). The

null model is always the same.
I Backward selection requires N > p (so that the full model can be fit).

Forward selection can be used even when p > N.

Neither forward nor backward selection is guaranteed to find the best
subset of predictors.
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Credit Card Balance

require(AER)
credit <- read.csv("Credit.csv")
fit <- lm(Balance~.,credit)
coeftest(fit)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -484.017314 26.076322 -18.5616 < 2.2e-16 ***
## Income -7.798884 0.233752 -33.3639 < 2.2e-16 ***
## Limit 0.191288 0.032555 5.8759 9.011e-09 ***
## Rating 1.129091 0.487398 2.3166 0.02104 *
## Cards 17.919886 4.329445 4.1391 4.274e-05 ***
## Age -0.638650 0.293004 -2.1797 0.02988 *
## GenderFemale -10.327215 9.896964 -1.0435 0.29737
## StudentYes 425.498590 16.608864 25.6188 < 2.2e-16 ***
## MarriedYes -7.482805 10.249865 -0.7300 0.46580
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Credit Card Balance

require(leaps)
all.fit <- regsubsets(Balance~., credit)
all <- summary(all.fit)
all$outmat

## Income Limit Rating Cards Age GenderFemale StudentYes MarriedYes
## 1 ( 1 ) " " " " "*" " " " " " " " " " "
## 2 ( 1 ) "*" " " "*" " " " " " " " " " "
## 3 ( 1 ) "*" " " "*" " " " " " " "*" " "
## 4 ( 1 ) "*" "*" " " "*" " " " " "*" " "
## 5 ( 1 ) "*" "*" "*" "*" " " " " "*" " "
## 6 ( 1 ) "*" "*" "*" "*" "*" " " "*" " "
## 7 ( 1 ) "*" "*" "*" "*" "*" "*" "*" " "
## 8 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*"

© Jiaming Mao



Credit Card Balance

# Mallow's Cp statistic is equivalent to AIC in the case of
# linear models with Gaussian errors
all$cp # Mallow's Cp

## [1] 1806.332193 688.156412 42.321818 12.249136 9.218038 6.648851
## [7] 7.532958 9.000000

all$bic

## [1] -535.9468 -814.1798 -1173.3585 -1198.0527 -1197.0957 -1195.7321 -1190.8790
## [8] -1185.4324
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Credit Card Balance
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Credit Card Balance

# best model according to AIC
coef(all.fit,6)

## (Intercept) Income Limit Rating Cards Age
## -493.7341870 -7.7950824 0.1936914 1.0911874 18.2118976 -0.6240560
## StudentYes
## 425.6099369

# best model according to BIC
coef(all.fit,4)

## (Intercept) Income Limit Cards StudentYes
## -499.7272117 -7.8392288 0.2666445 23.1753794 429.6064203
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Credit Card Balance

## Forward stepwise selection using AIC
null <- lm(Balance~1,credit)
full <- lm(Balance~.,credit)
fwd <- step(null, scope=formula(full), direction="forward")

## Start: AIC=4905.56
## Balance ~ 1
##
## Df Sum of Sq RSS AIC
## + Rating 1 62904790 21435122 4359.6
## + Limit 1 62624255 21715657 4364.8
## + Income 1 18131167 66208745 4810.7
## + Student 1 5658372 78681540 4879.8
## + Cards 1 630416 83709496 4904.6
## <none> 84339912 4905.6
## + Gender 1 38892 84301020 4907.4
## + Married 1 2715 84337197 4907.5
## + Age 1 284 84339628 4907.6
##
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Credit Card Balance

##
## Step: AIC=4359.63
## Balance ~ Rating
##
## Df Sum of Sq RSS AIC
## + Income 1 10902581 10532541 4077.4
## + Student 1 5735163 15699959 4237.1
## + Age 1 649110 20786012 4349.3
## + Cards 1 138580 21296542 4359.0
## + Married 1 118209 21316913 4359.4
## <none> 21435122 4359.6
## + Gender 1 16065 21419057 4361.3
## + Limit 1 7960 21427162 4361.5
##
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Credit Card Balance

##
## Step: AIC=4077.41
## Balance ~ Rating + Income
##
## Df Sum of Sq RSS AIC
## + Student 1 6305322 4227219 3714.2
## + Married 1 95068 10437473 4075.8
## + Limit 1 94545 10437996 4075.8
## + Age 1 90286 10442255 4076.0
## <none> 10532541 4077.4
## + Cards 1 2094 10530447 4079.3
## + Gender 1 948 10531593 4079.4
##
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Credit Card Balance

##
## Step: AIC=3714.24
## Balance ~ Rating + Income + Student
##
## Df Sum of Sq RSS AIC
## + Limit 1 194718 4032502 3697.4
## + Age 1 44620 4182600 3712.0
## <none> 4227219 3714.2
## + Married 1 13083 4214137 3715.0
## + Gender 1 12168 4215051 3715.1
## + Cards 1 10608 4216611 3715.2
##
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Credit Card Balance

##
## Step: AIC=3697.37
## Balance ~ Rating + Income + Student + Limit
##
## Df Sum of Sq RSS AIC
## + Cards 1 166410 3866091 3682.5
## + Age 1 37952 3994549 3695.6
## <none> 4032502 3697.4
## + Gender 1 13345 4019157 3698.0
## + Married 1 6660 4025842 3698.7
##
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Credit Card Balance

##
## Step: AIC=3682.52
## Balance ~ Rating + Income + Student + Limit + Cards
##
## Df Sum of Sq RSS AIC
## + Age 1 44472 3821620 3679.9
## <none> 3866091 3682.5
## + Gender 1 11350 3854741 3683.3
## + Married 1 3121 3862970 3684.2
##
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Credit Card Balance

##
## Step: AIC=3679.89
## Balance ~ Rating + Income + Student + Limit + Cards + Age
##
## Df Sum of Sq RSS AIC
## <none> 3821620 3679.9
## + Gender 1 10860.9 3810759 3680.7
## + Married 1 5450.6 3816169 3681.3
##
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Credit Card Balance

coeftest(fwd)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -493.734187 24.824765 -19.8888 < 2.2e-16 ***
## Rating 1.091187 0.484804 2.2508 0.02495 *
## Income -7.795082 0.233417 -33.3955 < 2.2e-16 ***
## StudentYes 425.609937 16.509565 25.7796 < 2.2e-16 ***
## Limit 0.193691 0.032383 5.9813 4.980e-09 ***
## Cards 18.211898 4.318650 4.2170 3.075e-05 ***
## Age -0.624056 0.291817 -2.1385 0.03309 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Credit Card Balance

## Forward stepwise selection using BIC
n <- nrow(credit)
fwd <- step(null, scope=formula(full), direction="forward", k=log(n))

coeftest(fwd)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -526.155523 19.746614 -26.6454 < 2.2e-16 ***
## Rating 1.087901 0.486995 2.2339 0.02605 *
## Income -7.874924 0.231455 -34.0236 < 2.2e-16 ***
## StudentYes 426.850146 16.574025 25.7542 < 2.2e-16 ***
## Limit 0.194409 0.032527 5.9768 5.099e-09 ***
## Cards 17.851731 4.334889 4.1182 4.656e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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The Bias-Variance Trade-off

The goal of model selection is to choose the model (out of the set of
candidate models) that can best balance the bias-variance tradeoff to
achieve the smallest out-of-sample error.

In the case of linear models, we have:

E
[(

y − x ′β̂
)2
]

= Var
(
x ′β̂
)

+
[
bias

(
x ′β̂
)]2

+ Var (e)

The OLS estimate β̂LS is unbiased: E
[
β̂LS

]
= β∗. Hence

bias
(
x ′β̂LS

)
= E

[
x ′β∗ − x ′β̂LS

]
= 0. What about Var

(
x ′β̂LS

)
?
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The Gauss-Markov Theorem

Note that β̂LS is a linear function of Y : β̂LS = (X ′X )−1 X ′Y =
∑

i wiyi ,
where wi = (X ′X )−1 xi .

Gauss-Markov Theorem
Under the assumption that

1 The true CEF is linear: E [y |x ] = x ′β∗

2 Homoskedasticity: E
[

(e∗)2
∣∣∣ x] = σ2

The OLS estimator β̂LS is BLUE: Best Linear Unbiased Estimator, in the
sense that among all unbiased linear estimators (estimators that are linear
functions of Y ), β̂LS has the smallest variance.
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The Gauss-Markov Theorem

Under the assumptions of Gauss-Markov,

E
[(

y − x ′β̂LS
)2
]

= Var
(
x ′β̂LS

)
+ σ2 (3)

The theorem says that if we have any other unbiased linear estimator
β̂, then Var

(
x ′β̂LS

)
≤ Var

(
x ′β̂
)
.

But can we do better – reduce the prediction error – if we are willing
to allow a little bias in exchange for a larger reduction in variance?
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Exploring the Bias-Variance Trade-off
Bias variance trade-o↵
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• Classical statistics focuses on unbiased estimates.

• Modern statistics has explored the trade-o↵.

• We might sacrifice a little bias for a larger reduction in variance.
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Exploring the Bias-Variance Trade-off

(3) ⇒

ED,x
[(

y − x ′β̂LS
)2
]
≈ 1

N

N∑
i=1

ED
[(

yi − x ′i β̂LS
)2
]

= 1
N

N∑
i=1

Var
(
x ′i β̂LS

)
+ σ2

= 1
N trace

(
Var

(
X β̂LS

))
+ σ2

≈ 1
N trace

(
X
(
X ′X

)−1 X ′
)
σ2 + σ2

= 1
N (1 + p)σ2 + σ2

, i.e., the prediction error scales linearly with the number of predictors p.
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Simulation 1

N = 50, p = 30. y ∼ N (x ′β∗, 1), where β∗ ∈ R30 with 10 “large”
coefficients (between 0.5 and 1) and 20 “small” ones (between 0 and 0.3).
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Exploring the Bias-Variance Trade-off

Each additional predictor adds the same amount of variance σ2

N ,
regardless of whether its true coefficient is large or small (or zero).

So in this example, we are “spending” variance in trying to fit truly
small coefficients—20 of them, out of 30 total.

We can do better by shrinking small coefficients towards zero, incurring
some bias, so as to reduce the variance. Methods that do this are
called shrinkage methods.
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Simulation 1
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Simulation 1

Linear regression:

Square bias ≈ 0.006
Variance ≈ 0.627

prediction error ≈ 1 + 0.006 + 0.627 = 1.633

Ridge regression, at its best:

Square bias ≈ 0.077
Variance ≈ 0.403

prediction error ≈ 1 + 0.077 + 0.403 = 1.48
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Ridge Regression

β̂R = arg min
β


N∑

i=1

yi − β0 −
p∑

j=1
βjxij

2

+ λ
p∑

j=1
β2

j︸ ︷︷ ︸
penalty


(4)

, where λ ≥ 0 is a tuning parameter that controls the strength of the
penalty term, which has the effect of shrinking the estimates towards zero.

λ = 0⇒ β̂R = β̂LS4

λ =∞⇒ β̂R
1 = · · · = β̂R

p = 05

4β̂LS denotes the least square estimate.
5β̂0 is not shrunk toward 0.
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Ridge Regression

An equivalent way to write the ridge problem is:

β̂R = arg min
β


N∑

i=1

yi − β0 −
p∑

j=1
βjxij

2
 (5)

subject to
p∑

j=1
β2

j ≤ C

(4) is the Lagrangian form of (5). There is a one-to-one correspondence
between λ in (4) and C in (5).
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Ridge Regression

Least square estimates are scale equivariant: multiplying xj by a
constant c leads to a scaling of β̂j by 1/c. β̂jxj remains the same.

Ridge regression estimates are not scale equivariant. They can change
substantially when multiplying a given predictor by a constant.
Therefore, xij need to be standardized before applying ridge
regression.

In addition, note that β0 is not penalized: we do not shrink β̂0.
Otherwise we could add some constant c to y and the solution would
be different.
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Ridge Regression

Let x̃ij = xij−x j√
1
N
∑N

i=1(xij−x j )2
, so that xijs are both centered and standardized.

If we use x̃ij as the regressors, then β̂0 = y6 and we can estimate the the
rest of the βs by a ridge regression without intercept:

β̂R = arg min
β

{ N∑
i=1

(
ỹi − x̃ ′i β

)2 + λ ‖β‖22

}
(6)

, where ‖.‖2 denotes the `2 norm, ỹi = yi − y , x̃i = [x̃i1, . . . , x̃ip]′, and
β = [β1, . . . , βp]′.

6This is true as long as x̃ij are centered.
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Ridge Regression

(6) ⇒
β̂R =

(
X̃ ′X̃ + λI

)−1
X̃ ′Y (7)

, where I is the p × p identity matrix, and X̃ is centered and standardized.

In the case that X̃ is orthonormal7, (7) ⇒

β̂R
j =

β̂LS
j

1 + λ
(8)

7so that X̃ ′X̃ = I
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Ridge Regression

To choose λ, we can treat λ is as a hyperparameter and select its value via
cross-validation:

Given a grid of λ values, perform cross-validation on the training set
to pick the λ for which the cross-validation error is smallest.

Re-fit the model with the selected λ using all the training data.

Benchmark the performance of the final fitted model using a test set.
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Simulation 1

Example: visual representation of ridge coe�cients

Recall our last example (n = 50, p = 30, and �2 = 1; 10 large true
coe�cients, 20 small). Here is a visual representation of the ridge
regression coe�cients for � = 25:
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6Ridge regression coefficients at λ = 25
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Simulation 1
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Simulation 2

N = 50,p = 30. y ∼ N (x ′β∗, 1), where β∗ ∈ R30 with all 30 coefficients
between 0.5 and 1.

True coefficients
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Simulation 2
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Credit Card Balance

require(glmnet)
x <- model.matrix(Balance~.,credit)[,-1] # no intercept
y <- credit$Balance
ridgefit <- glmnet(x,y,alpha=0,lambda=0.01)
coef(ridgefit)

## 9 x 1 sparse Matrix of class "dgCMatrix"
## s0
## (Intercept) -479.7851081
## Income -7.8002927
## Limit 0.2049782
## Rating 0.9251803
## Cards 18.9116337
## Age -0.6364639
## GenderFemale -10.3247237
## StudentYes 426.0874930
## MarriedYes -7.0597648
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Credit Card Balance

ridgefit <- glmnet(x,y,alpha=0,lambda=1e10)
coef(ridgefit)

## 9 x 1 sparse Matrix of class "dgCMatrix"
## s0
## (Intercept) 5.200149e+02
## Income 2.777310e-07
## Limit 7.881306e-09
## Rating 1.178376e-07
## Cards 1.331034e-06
## Age 2.245918e-09
## GenderFemale 9.061130e-07
## StudentYes 1.820460e-05
## MarriedYes -2.455471e-07
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Credit Card Balance

ridgefit <- glmnet(x,y,alpha=0) # automatically select a range of lambda
dim(coef(ridgefit))

## [1] 9 100

c(ridgefit$lambda[1],ridgefit$lambda[50],ridgefit$lambda[100])

## [1] 396562.69957 4154.45333 39.65627

coef(ridgefit)[,50]

## (Intercept) Income Limit Rating Cards Age
## 339.02562071 0.44648135 0.01505380 0.22506908 2.77187416 -0.05112386
## GenderFemale StudentYes MarriedYes
## 1.76037503 39.44486798 -0.95049050
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Credit Card Balance
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Credit Card Balance

5e−03 5e−02 5e−01 5e+00

2
5

.0
2

5
.2

2
5

.4
2

5
.6

C
ro

s
s
−

V
a

li
d

a
ti
o

n
 E

rr
o

r

5e−03 5e−02 5e−01 5e+00

−
3

0
0

−
1

0
0

0
1

0
0

3
0

0

S
ta

n
d

a
rd

iz
e

d
 C

o
e

ff
ic

ie
n

ts

λλ

© Jiaming Mao



The Lasso

The lasso8 is defined as:

β̂L = arg min
β


N∑

i=1

yi − β0 −
p∑

j=1
βjxij

2

+ λ
p∑

j=1
|βj |

 (9)

Equivalently,

β̂L = arg min
β


N∑

i=1

yi − β0 −
p∑

j=1
βjxij

2
 (10)

subject to
p∑

j=1
|βj | ≤ C

8acronym for: Least Absolute Selection and Shrinkage Operator. Not to be confused
with wonder woman’s weapon of choice.
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The Lasso

Centering and standardizing xij ⇒

β̂L = arg min
β

{ N∑
i=1

(
ỹi − x̃ ′i β

)2 + λ ‖β‖1

}
(11)

, where ‖.‖1 denotes the `1 norm, ỹi = yi − y , x̃ij = xij−x j√
1
N
∑N

i=1(xij−x j )2
, and

β = [β1, . . . , βp]′.
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The Lasso

There is in general no closed-form solution to (11). In the case that X is
orthonormal, we have:

β̂L =


β̂LS − λ

2 if β̂LS > λ
2

β̂LS + λ
2 if β̂LS < −λ

2
0 if

∣∣∣β̂LS
∣∣∣ ≤ λ

2
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The Lasso

As with ridge regression, the lasso shrinks the coefficient estimates
towards zero.

However, in the case of the lasso, the `2 penalty has the effect of
forcing some of the coefficient estimates to be exactly equal to zero
when the tuning parameter is sufficiently large.

Hence, the lasso performs variable selection. We say that the lasso
yields sparse models — that is, models that involve only a subset of
the variables.

As in ridge regression, selecting a good value of λ for the lasso is
critical and is in practice done via cross-validation.

© Jiaming Mao



The Lasso

Contours of the error and constraint functions for the lasso (left) and ridge
regression (right). The solid blue areas are the constraint regions, |β1|+ |β2| ≤ C

and β2
1 + β2

2 ≤ C , while the red ellipses are the contours of the RSS.
© Jiaming Mao



The Lasso
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The ridge regression and the lasso coefficient estimates for a simple setting with
N = p and X being orthonormal.
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Credit Card Balance

lassofit <- glmnet(x,y,alpha=1,lambda=0.01)
coef(lassofit)

## 9 x 1 sparse Matrix of class "dgCMatrix"
## s0
## (Intercept) -479.5814236
## Income -7.7997555
## Limit 0.2056525
## Rating 0.9149775
## Cards 18.9546633
## Age -0.6358133
## GenderFemale -10.3038053
## StudentYes 426.0922168
## MarriedYes -7.0184389
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Credit Card Balance

lassofit <- glmnet(x,y,alpha=1,lambda=100)
coef(lassofit)

## 9 x 1 sparse Matrix of class "dgCMatrix"
## s0
## (Intercept) -157.92073077
## Income .
## Limit 0.01822877
## Rating 1.64828689
## Cards .
## Age .
## GenderFemale .
## StudentYes 65.68634041
## MarriedYes .
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Credit Card Balance

lassofit <- glmnet(x,y,alpha=1) # automatically select a range of lambda
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Comparing the Lasso and Ridge Regression
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Plots of squared bias (black), variance (green), and prediction error
(purple) for the lasso (solid) and ridge (dashed) on a simulated data set
with p = 45 and n = 50. All 45 predictors are related to the response.
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Comparing the Lasso and Ridge Regression
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lasso (solid) and ridge (dashed). Now only two predictors in the simulated

data set are related to the response.
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Comparing the Lasso and Ridge Regression
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Ten-fold cross-validation error for the lasso, applied to the simulated data
set with 2 out of 45 predictors related to the response.
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U.S. Election

We want to predict whether a person voted for Clinton or Trump in
the 2016 U.S. presidential election using demographic variables taken
from the 2018 General Social Survey (GSS).

Selected variables include: age, sex, income, work, marriage, family
information, political party affiliation, etc.

© Jiaming Mao
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U.S. Election

gss <- read.csv("GSS2018.csv")
dim(gss)

## [1] 455 50

names(gss)

## [1] "age" "sex" "sibs" "size" "adults" "childs"
## [7] "class" "coninc" "actssoc" "attend" "born" "cappun"
## [13] "courts" "degree" "earnrs" "ethnum" "famgen" "finalter"
## [19] "finrela" "fund" "hhrace" "madeg" "marital" "mobile16"
## [25] "natmass" "natpark" "othlang" "natchld" "sexornt" "partyid"
## [31] "phone" "polviews" "pres16" "prestg10" "natsci" "quallife"
## [37] "race" "raclive" "rank" "relig" "reliten" "satfin"
## [43] "satsoc" "sei10" "vetyears" "vote12" "happy" "weekswrk"
## [49] "wrkslf" "wrkstat"
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U.S. Election

Y <- gss$pres16 # GSS Q: Did you vote for Clinton or Trump?
summary(Y)

## Clinton Trump
## 260 195

X <- model.matrix(pres16 ~.,gss)[,-1] # create dummies for categorical vars
dim(X)

## [1] 455 128
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U.S. Election

#############################
# Logistic Lasso Regression #
#############################
require(glmnet)
# fit the lasso with a range of automatically selected lambdas
lasso.all <- glmnet(X,Y,alpha=1,family="binomial")
cv.lasso <- cv.glmnet(X,Y,alpha=1,family="binomial") # cross-validation
# choose lambda associated with min CV error (or plus 1se)
lambda.star <- cv.lasso$lambda.1se # Alternatively: cv.lasso$lambda.min
# fit the lasso with optimal lambda
fit = glmnet(X,Y,alpha=1,lambda=lambda.star,family="binomial")
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U.S. Election

plot(lasso.all,xvar="lambda")
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U.S. Election

plot(cv.lasso)
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U.S. Election

source('lassosummary.R') # external function
lassosummary(fit)

## beta
## sexmale 0.01785683
## cappunoppose -0.77766891
## hhraceblack -0.73658259
## hhracewhite 0.20921740
## maritalmarried 0.06177141
## maritalnever married -0.21100431
## natchldtoo little -0.11405573
## partyidind,near rep 1.22815699
## partyidnot str democrat -0.54035075
## partyidnot str republican 1.63637730
## partyidother party 0.49325142
## partyidstrong democrat -1.26057401
## partyidstrong republican 2.60413814
## polviewsliberal -0.03666117
## polviewsslightly liberal -0.04752788
## racewhite 0.41245491
## religprotestant 0.05175686
## satfinsatisfied 0.02233638
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Considerations in High Dimensions

Most traditional statistical techniques for regression and classification
are intended for the low-dimensional settings in which N � p.

Settings in which p is large relative to N are often referred to as
high-dimensional. When p > N, classical approaches such as least
squares linear regression can no longer be applied.
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Considerations in High Dimensions
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Left: Least squares regression in the low-dimensional setting. Right: Least
squares regression with N = 2 observations and two parameters to be estimated.
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Considerations in High Dimensions
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Considerations in High Dimensions

In high dimensions, even linear models are too flexible.

When p > N, information criteria such as AIC and BIC are not
appropriate.

Multicollinearity can be extreme in high-dimensional problems.

I This means that we can never know exactly which variables (if any)
truly are predictive of the outcome, and we can never identify the best
coefficients for use in the regression. At most, we can hope to assign
large regression coefficients to variables that are correlated with the
variables that truly are predictive of the outcome.
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Multi-Stage Lasso

Consider the following linear model:

y = x ′β + e (12)

Let β∗ be the population least squares coefficients:

β∗ = arg min
β

E
[(
y − β′x

)2]
When β∗ is high-dimensional, but contains mostly zeros, i.e. when the
number of non-zero population coefficients � p, we say there is sparsity.
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Multi-Stage Lasso

In high-dimensional sparse settings, we may be able to improve upon the
results of the lasso by running a multi-stage procedure:

Multi-Stage Lasso (incl. Post-Lasso OLS)
Stage 1 In the first stage, estimate (12) by the lasso.

Stage 2 Run the lasso again on the variables selected by the first
stage.

Alternatively, run OLS on the selected variables in stage 2. Note that this
corresponds to running the lasso in the second stage with λ = 0.
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Multi-Stage Lasso

Intuitively, the first stage focuses on variable selection, while the
second stage focuses on (shrinkage) estimation9.

Since the variables in the second stage have less "competition" from
noise variables, applying the lasso or OLS to these selected variables
could result in better estimates.

9The idea originates from Efron et al. (2004), in which the authors propose running
least angle regression (LARS, which incorporates the lasso) in the first stage and OLS in
the second stage, a procedure that they call the LARS-OLS hybrid. Meinshausen
(2007) proposes the two-stage procedure outlined above, which the author calls relaxed
Lasso (Meinshausen discusses using OLS in the second stage as a special case of the
relaxed lasso). Belloni and Chernozhukov (2013) propose the same two-stage procedure
as Meinshausen (2007) but with OLS (rather than a lasso that incorporates the OLS) as
the second stage, which they call the post-Lasso OLS.
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Simulation 3

x1, . . . , x99, e ∼i .i .d . N (0, 1)
y = β1x1 + · · ·+ β99x99 + e

, where

β1 = · · · = β5 = 5
β6 = · · · = β99 = 0
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Simulation 3

# Training Set
n = 100 # sample size
p = 99 # number of variables
s = 5 # number of non-zero coefficients
X = matrix(rnorm(n*p),ncol=p)
beta = c(rep(5,s),rep(0,p-s))
Y = X%*%beta + rnorm(n)

# Test set
n = 1e5
Xnew = matrix(rnorm(n*p),ncol=p)
Ynew = Xnew%*%beta + rnorm(n)
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Simulation 3

#######
# OLS #
#######
require(AER)
fit.ols = lm(Y ~ X-1)
coeftest(fit.ols)[1:10,]

## Estimate Std. Error t value Pr(>|t|)
## X1 5.5742095 0.6359381 8.7653334 0.07231661
## X2 5.1908292 1.4299454 3.6300891 0.17112853
## X3 4.3040108 0.7556606 5.6956934 0.11064444
## X4 5.8280063 0.6142997 9.4872367 0.06685590
## X5 4.4215566 0.4772229 9.2651804 0.06844604
## X6 0.3826747 1.1566349 0.3308518 0.79659012
## X7 0.6595970 1.3420518 0.4914840 0.70918467
## X8 -0.3680858 1.2459579 -0.2954239 0.81712886
## X9 -0.2908295 1.3123265 -0.2216137 0.86116025
## X10 -1.6538125 2.5926638 -0.6378816 0.63852163
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Simulation 3

# number of non-zero coefficients
sum(fit.ols$coefficients!=0)

## [1] 99

# number of statistically significant coefficients:
pv.ols = summary(fit.ols)$coefficients[,4]
sum(pv.ols<.05)

## [1] 0

# test err
pred.ols = predict(fit.ols,data.frame(X=Xnew))
mean((Ynew-pred.ols)^2)

## [1] 229.3538
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Simulation 3

#########
# Lasso #
#########
require(glmnet)
cv.lasso = cv.glmnet(X,Y,intercept=FALSE,alpha=1)
lambda.star = cv.lasso$lambda.min
fit.lasso = glmnet(X,Y,intercept=FALSE,alpha=1,lambda=lambda.star)

# number of non-zero estimated coefficients:
sum(fit.lasso$beta!=0)

## [1] 17

# test err
pred.lasso = predict(fit.lasso,Xnew)
mean((Ynew-pred.lasso)^2)

## [1] 1.436501
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Simulation 3

source('lassosummary.R')
lassosummary(fit.lasso)

## beta
## V1 4.82447042
## V2 4.79685190
## V3 4.54908246
## V4 4.70615289
## V5 4.86261024
## V18 -0.08003794
## V23 0.01706472
## V37 0.01611246
## V39 0.01705680
## V40 0.08449569
## V45 0.04380224
## V77 0.02807225
## V90 -0.10516791
## V94 -0.01021298
## V96 0.04094897
## V97 -0.04232704
## V99 -0.15482818
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Simulation 3

lasso.all = glmnet(X,Y,intercept=FALSE,alpha=1)
plot(lasso.all,xvar="lambda")
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Simulation 3

#################
# Relaxed Lasso #
#################
require(relaxo)
fit.relaxo = cvrelaxo(X,Y)

# estimated coefficients
fit.relaxo$beta[1:5]

## [1] 4.969345 4.963355 4.754283 4.865056 5.000046

sum(fit.relaxo$beta!=0)

## [1] 5

# test err
pred.relaxo = predict(fit.relaxo,Xnew)
mean((Ynew-pred.relaxo)^2)

## [1] 1.080831 © Jiaming Mao



Post-Selection Inference

To conduct statistical inference for procedures that involve model
selection, such as forward stepwise regression or the lasso, it is
tempting to look only at the final selected model10. However, such
inference is generally invalid.

The problem is essentially the same as those of specification search
and data-snooping: an observed correlation of 0.9 between x and y
may be noteworthy. However, if x is found by searching over 100
variables looking for the one with the highest observed correlation
with y , then the finding is no longer as impressive and could well be
due to chance.

If not taken into account, the effects of selection can greatly
exaggerate the apparent strengths of relationships.

10For example, one may obtain p−values for the coefficients of interest by using OLS
to refit the model selected by the lasso.
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Post-Selection Inference

The problem of assessing the strength of the evidence after searching
through a large number of models to find the best one is called
post-selection inference11.
What is post-selection inference?

Inference the old way
(pre-1980?) :

1. Devise a model

2. Collect data

3. Test hypotheses

Classical inference

Inference the new way:

1. Collect data

2. Select a model

3. Test hypotheses

Post-selection inference

Classical tools cannot be used post-selection, because they do not
yield valid inferences (generally, too optimistic)

The reason: classical inference considers a fixed hypothesis to be
tested, not a random one (adaptively specified)

15 / 46

Source: Tibshirani (2015)

11or, selective inference.
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Post-Selection Inference

One way to conduct post-selection inference is to make the inference
conditional on the model selected12.

Consider the following variable selection problem: we are interested in the
linear relationship between a p−dimensional x and a target y . Using a
selection algorithm, we arrive at the following model:

y = x ′MβM + e (13)

, where M ⊂ {1, . . . , p} indexes the subset of selected x variables.

12We have already discussed an approach designed to account for selection due to
multiple-testing: the Bonferroni correction, which bounds the family-wise error rate.
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Post-Selection Inference

Let β∗M be the population coefficients of (13)13. How do we construct a
confidence interval for β∗M,j , j ∈ M14?

Classic CI: construct CM,j such that

Pr
(
β∗M,j ∈ CM,j

)
≥ 1− α (14)

13i.e.,
β∗M = arg min

βM

E
[(

y − x ′MβM
)2
]

14β∗M,j is the population coefficient for xM,j , which (1) is the j th dimension of x ; (2)
belongs to the subset M. Note that the value of β∗M,j depends on what other variables
are included in M.
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Post-Selection Inference
Problem: here we do not start with model M. Instead, we start with
y = x ′β + e and use a selection algorithm to find the optimal subset M.
However, for every independent random sample D = {x , y} drawn from
the underlying population, we may end up with a different selected model
MD. β∗M,j is undefined when MD 6= M.

Solution: construct CI for β∗M,j conditional on M being selected:

Pr
(
β∗M,j ∈ CM,j

∣∣∣M is selected
)
≥ 1− α

Such an approach is called conditional coverage15.
15Another approach is to assume the existence of a true model:

y = x ′β0 + e

, in which β0 is sparse, and construct confidence intervals for β0 when lasso-type
estimators are applied. Such an approach requires assumptions about the correctness of
the linear model and the sparsity of β0. © Jiaming Mao



Post-Selection Inference

This is discussed further in Section 3. We note that one-step estimators are com-
monly used in semi-parametric inference: see for example Bickel et al. (1993).

In this paper we do not provide rigorous proofs of the claimed results, but
rather theoretical and conceptual sketches, together with numerical evidence.
We are confident that rigorous proofs can be given (with appropriate assump-
tions) and plan to report these elsewhere. We also note the strong similarity
between our one-step estimator and the “debiased lasso” construction of Zhang
and Zhang (2014), Bühlmann (2013), van de Geer et al. (2013), and Javanmard
and Montanari (2014). This connection is detailed in Remark A of this paper.

Figure 1 shows an example— the South African heart disease data. These
are a retrospective sample of 463 males in a heart-disease high-risk region of the
Western Cape, South Africa. The outcome is binary— coronary heart disease—
and there are 9 predictors. We applied lasso-penalized logistic regression, choos-
ing the tuning parameter by cross-validation. The left panel shows the standard
(naive) p-values and the post-selection p-values from our theory, for the predic-
tors in the active set. Since the sample size is large compared to the number of
predictors, the unadjusted and adjusted p-values are only substantially di↵erent
for two of the predictors. On the right we have added 100 independent stan-
dard Gaussian predictors (labelled X1, X2 . . . X100) to examine the e↵ects of
selection. Now the naive p-values are unrealistically small for the noise variables
while the adjusted p-values are appropriately large. Although our focus is on

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predictor

P−
va
lu
e

●

● ● ● ●

●

●

●

● ● ● ●

●

●

naive
adjusted

sbp

tobacco ldl famhist typea

obesity

age

Original data

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predictor

P−
va
lu
e

●

● ● ● ● ●

●
●

● ● ●
● ● ●

●

● ● ●

●

●

●

●

●

●

●

●

●
●

sbp

tobaccoldlfamhist
typea

age

X3 X13 X26
X31

X58

X65

X85 X95

With 100 noise variables added

Figure 1: South African Heart disease data. P-values from naive and selection-
adjusted approaches, for original data (left) and data with 100 additional noise
predictors (right). Each model was chosen by lasso-penalized logistic regression,
choosing the tuning parameter by cross-validation.

selection via `1-penalization, a similar approach can likely be applied to forward
stepwise methods for likelihood models, and in principle, least angle regression
(LAR) though algorithms for LAR in the generalized linear model setting are
less developed with Park and Hastie (2007) one exception.

2

Taylor & Tibshirani (2017)
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Simulation 3

##########################################
# Post-selection inference for the lasso #
##########################################
# here we use a post-selection inference method
# for lasso-type estimators based on conditional coverage.
# See Tibshirani et al. (2016)
require(selectiveInference)
lassoInf = fixedLassoInf(X,Y,intercept=FALSE,

beta=fit.lasso$beta,
lambda=fit.lasso$lambda)

pv.lasso = lassoInf$pv

# compare with the naive method of
# running OLS on variables selected by the lasso
chosen.var = X[,which(fit.lasso$beta!=0)]
fit.olslasso = lm(Y ~ chosen.var-1)
pv.naive = summary(fit.olslasso)$coefficients[,4]

© Jiaming Mao



Simulation 3

coeftest(fit.olslasso)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## chosen.var1 4.964291 0.100367 49.4613 < 2.2e-16 ***
## chosen.var2 4.926740 0.091933 53.5907 < 2.2e-16 ***
## chosen.var3 4.744114 0.101547 46.7185 < 2.2e-16 ***
## chosen.var4 4.847510 0.096313 50.3308 < 2.2e-16 ***
## chosen.var5 4.926776 0.093042 52.9519 < 2.2e-16 ***
## chosen.var6 -0.223603 0.089858 -2.4884 0.014831 *
## chosen.var7 0.060767 0.098379 0.6177 0.538474
## chosen.var8 0.058576 0.090871 0.6446 0.520963
## chosen.var9 0.130765 0.099661 1.3121 0.193103
## chosen.var10 0.203057 0.096866 2.0963 0.039105 *
## chosen.var11 0.122677 0.088432 1.3873 0.169077
## chosen.var12 0.139490 0.089428 1.5598 0.122612
## chosen.var13 -0.199773 0.094191 -2.1209 0.036911 *
## chosen.var14 -0.117156 0.088313 -1.3266 0.188281
## chosen.var15 0.164892 0.096683 1.7055 0.091843 .
## chosen.var16 -0.117979 0.088426 -1.3342 0.185786
## chosen.var17 -0.258159 0.097588 -2.6454 0.009758 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

© Jiaming Mao



Simulation 3
lassoInf

##
## Call:
## fixedLassoInf(x = X, y = Y, beta = fit.lasso$beta, lambda = fit.lasso$lambda,
## intercept = FALSE)
##
## Standard deviation of noise (specified or estimated) sigma = 10.217
##
## Testing results at lambda = 0.139, with alpha = 0.100
##
## Var Coef Z-score P-value LowConfPt UpConfPt LowTailArea UpTailArea
## 1 4.964 4.157 0.018 1.401 12.830 0.049 0.05
## 2 4.927 4.504 0.000 3.315 13.136 0.049 0.05
## 3 4.744 3.927 0.009 2.182 17.443 0.050 0.05
## 4 4.848 4.230 0.044 0.222 11.423 0.050 0.05
## 5 4.927 4.450 0.108 -1.999 12.436 0.050 0.05
## 18 -0.224 -0.209 0.740 -4.113 15.239 0.050 0.05
## 23 0.061 0.052 0.826 -68.087 9.614 0.050 0.05
## 37 0.059 0.054 0.813 -60.133 9.719 0.050 0.05
## 39 0.131 0.110 0.901 -32.436 1.198 0.050 0.05
## 40 0.203 0.176 0.722 -19.556 6.150 0.050 0.05
## 45 0.123 0.117 0.870 -27.107 2.008 0.050 0.05
## 77 0.139 0.131 0.845 -24.394 2.573 0.050 0.05
## 90 -0.200 -0.178 0.709 -6.415 18.764 0.050 0.05
## 94 -0.117 -0.111 0.818 -4.213 28.400 0.050 0.05
## 96 0.165 0.143 0.807 -24.120 3.908 0.050 0.05
## 97 -0.118 -0.112 0.809 -4.584 28.179 0.050 0.05
## 99 -0.258 -0.222 0.666 -6.694 15.508 0.050 0.05
##
## Note: coefficients shown are partial regression coefficients

© Jiaming Mao



Simulation 3
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Shrinkage as Continuous Model Selection

Consider a series of polynomial models: H0 ⊂ H1 ⊂ H2 ⊂ · · · , where
Hq =

{
h (x) = β0 + β1x + · · ·βqxq

q
}
, then estimating, say H2, is

equivalent to estimating, say H10, with the constraint that
β3 = · · · = β10 = 016.

Instead of imposing such “hard constraints”, shrinkage methods
impose “soft constraints” by giving β a “budget” (e.g., ‖β‖22 ≤ C or
‖β‖1 ≤ C) that have the effect of shrinking β toward 0.

In this sense, shrinkage can be thought of as selecting the final
hypothesis from a continuous set of models rather than a discrete one
(constant, linear, quadratic ...).

16Technically, this is only true if the polynomials are expressed as linear combinations
of Legendre polynomials in x rather than consecutive powers of x .
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Regularization

Shrinkage is a form of regularization: methods that constrain the
complexity of a model in order to avoid overfitting and improve
out-of-sample error.

In least squares regression, given a model H, we choose g ∈ H to
minimize the in-sample error Ein. This is called empirical risk
minimization (ERM).

Regularization methods choose g by solving the following problem:

min
h∈H

Ein (h) (15)

subject to Ω (h) ≤ C

, where Ω (h) is a measure of the complexity of h and is called a
regularizer17.

17When H is parametrized by β, Ω (h) can be written as Ω (β).
© Jiaming Mao



Regularization

Equivalently, (15) can be written as

min
h∈H
{Ein (h) + λΩ (h)} (16)

= min
h∈H

Eaug (h)

, where we define augmented error Eaug (h) ≡ Ein (h) + λΩ (h).

(15) is called the Ivanov form and expresses regularization as
constrained ERM.

(16) is called the Tikhonov form and expresses regularization as
penalized ERM.

© Jiaming Mao



Regularization

Regularization as Constrained ERM

x

y

x
y

⃝ AML
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Regularization

Regularization as Constrained ERM
Minimizing Ein (β) + λ ‖β‖22 for different λsE (w) + λ

N w w λ

λ = 0 λ = 0.0001 λ = 0.01 λ = 1

x

y

x

y

x

y

x

y

−→ −→ −→ −→

⃝ AML
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Regularization

Bias-Variance Decomposition

H0 f
f :[−1, 1]→ R f(x) = sin(πx)

N = 2

H0: h(x) = b

H1: h(x) = ax + b

H0 H1 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

⃝ AML
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Regularization

Bias-Variance Decomposition . . .

H0 H1

x

y

ḡ(x)

sin(πx)

x
y ḡ(x)

sin(πx)

= 0.50 = 0.25 = 0.21 = 1.69

⃝ AML

© Jiaming Mao



Regularization

Bias-Variance Decomposition
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Regularization

Bias-Variance Decomposition
. . .

x

y ḡ(x)

sin(πx)

x
y ḡ(x)

sin(πx)

= 0.21 = 1.69 = 0.23 = 0.33

⃝ AML
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Regularization

Eaug is a better proxy for Eout than Ein.

VC generalization bound:

Eout (h) ≤ Ein (h) +O

√dVC (H) lnN
N


Augmented error:

Eaug (h) = Ein (h) + λΩ (h)

© Jiaming Mao



Choosing a Regularizer

Variations on Weight Decay

Uniform Weight Decay Low Order Fit Weight Growth!
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c⃝ AML Creator: Malik Magdon-Ismail Regularization: 27 /30 Choosing a regularizer −→

Simulated data set with the target function being a 15th degree polynomial.
Left: Ω (β) =

∑15
j=0 β

2
j ; Right: Ω (β) =

∑15
j=0 jβ2

j
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Choosing a Regularizer

L0 regularizer: Ω (β) = ‖β‖0 =
∑

j I {βj 6= 0}
L1 regularizer: Ω (β) = ‖β‖1 =

∑
j |βj |

L2 regularizer: Ω (β) = ‖β‖22 =
∑

j β
2
j

Lq regularizer: Ω (β) = ‖β‖qq =
∑

j |βj |q

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 3

q = 4 q = 2 q = 1 q = 0.5 q = 0.1

FIGURE 3.12. Contours of constant value ofP
j |βj |q for given values of q.

Contours of constant value of Lq regularizer for different values of q
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Elastic Net
In the presence of highly correlated features, the results of the lasso can be
arbitrary and unstable.

Target function: y = f (x) = 4x1; Model: h (x) = w1x1 + w2x2

Suppose x1 = x2, then any h (x) with w1 + w2 = 4 minimizes Ein, but
different regularizers penalize them differently:

w1 w2 ‖w‖1 ‖w‖22
4 0 4 16

2 2 4 8

1 3 4 10

-1 5 6 26

‖w‖1 does not discriminate (as long as all have same sign)
‖w‖22 minimized when w is spread equally © Jiaming Mao



Elastic Net

Correlated Features (cont.)

Equal Features, `2 Constraint

w2

w1

kwk2  2

w1 + w2 = 2
p

2

w1 + w2 = 2
p

2 + 1.75

w1 + w2 = 2
p

2 + 3.5

w1 + w2 = 2
p

2 + 5.25

w1 + w2 = 2
p

2 + 7

w1 + w2 = 2
p

2 + 8.75

Suppose the line w1 +w2 = 2
p

2+3.5 corresponds to the empirical risk minimizers.
Empirical risk increase as we move away from these parameter settings
Intersection of w1 +w2 = 2

p
2 and the norm ball kwk2 6 2 is ridge solution.

Note that w1 = w2 at the solution

David S. Rosenberg (Bloomberg ML EDU) October 5, 2017 8 / 29
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Elastic Net

Correlated Features (cont.)

Equal Features, `1 Constraint

w2

w1

kwk1  2

w1 + w2 = 2

w1 + w2 = 3.75

w1 + w2 = 5.5

w1 + w2 = 7.25

w1 + w2 = 9

w1 + w2 = 10.75

Suppose the line w1 +w2 = 5.5 corresponds to the empirical risk minimizers.
Intersection of w1 +w2 = 2 and the norm ball kwk1 6 2 is lasso solution.
Note that the solution set is {(w1,w2) : w1 +w2 = 2,w1,w2 > 0}.

David S. Rosenberg (Bloomberg ML EDU) October 5, 2017 9 / 29
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Elastic Net

The elastic net combines the lasso and ridge penalties:

Ω (β) = α ‖β‖1 + (1− α) ‖β‖22

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 3

q = 1.2 α = 0.2

Lq Elastic Net

FIGURE 3.13. Contours of constant value ofP
j |βj |q for q = 1 .2 (left plot), and the elastic-net

penalty
P

j(αβ2
j + (1 − α)|βj |) for α = 0 .2 (right plot).

Although visually very similar, the elastic-net has sharp
(non-differentiable) corners, while the q = 1 .2 penalty
does not.

The elastic net shrinks together the coefficients of correlated features
like ridge regression, while encouraging sparse solutions like the lasso.

© Jiaming Mao



Elastic Net

Simulation:

z1, z2, ε1, . . . , ε6, e ∼i .i .d . N (0, 1)
y = 3z1 − 1.5z2 + 2e

xj =
{
z1 + 0.2εj j = 1, 2, 3
z2 + 0.2εj j = 4, 5, 6

© Jiaming Mao



Elastic Net

# generate data
require(MASS)
require(glmnet)
n <- 100
z1 <- rnorm(n)
z2 <- rnorm(n)
e <- mvrnorm(n,mu=rep(0,6),Sigma=diag(6))
x1 <- z1 + e[,1:3]/5
x2 <- z2 + e[,4:6]/5
x <- cbind(x1,x2)
y <- 3*z1 - 1.5*z2 + 2*rnorm(n)

# lasso
lassofit <- glmnet(x,y,alpha=1)

# elastic net
enetfit <- glmnet(x,y,alpha=0.3) # 30% L1 and 70 %L2

© Jiaming Mao



Elastic Net
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Bayesian Interpretation of Regularization

The lasso and ridge regression estimates correspond to the maximum a
posteriori (MAP) estimates with Laplace and Gaussian priors18.

Ridge regression is the posterior mode19 for β under a normal prior
with mean zero.

The lasso is the posterior mode for β under a double-exponential
(Laplace) prior with mean zero.

The standard deviation of the prior distribution corresponds to
regularization strength (λ).

18See Appendix I for a simple derivation
19as well as the posterior mean

© Jiaming Mao



Bayesian Interpretation of Regularization

The maximum à posteriori (MAP) estimate is defined as

θ̂MAP = arg max
θ

p (θ|D)

= arg max
θ

p (D|θ) p (θ)

, i.e., θ̂MAP is the mode of the posterior distribution of θ.

Given a uniform prior p (θ) = constant, θ̂MAP = θ̂MLE
20.

20In this case, the Bayesian estimate equals the frequentist estimate because the prior
is uninformative (hence uniform priors are sometimes called uninformative priors). As a
result, D becomes the only source of our knowledge for θ, as in the frequentist
approach. If p (θ) = constant over the entire real line, then it is also an improper prior,
since it does not integrate to one.

© Jiaming Mao



Bayesian Interpretation of Regularization

What about prior knowledge?
We know the coin is “close” to 50-50. What can we do now?

The Bayesian way…
Rather than estimating a single θ, we obtain a distribution over possible 

values of θ

50-50

Before data After data

29

The Bayesian Way
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Bayesian Interpretation of Regularization
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Left: Gaussian prior for Ridge; Right: Laplace prior for the Lasso
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Bayesian Interpretation of Regularization

From a Bayesian perspective, regularization amounts to the use of
informative priors, where we introduce our knowledge or belief about
the target function in the form of priors, and use them to “regulate”
the behavior of the hypothesis we choose21.

21Recall that in choosing a model, our choice should be based both on our belief
about the true target function and on the amount of data we have (matching model
complexity to data sources). Similarly, the choice of regularizers is based both on our
belief about the target function (such as its smoothness), and the necessity of tempering
down the variability in our estimates when p is large relative to N.

© Jiaming Mao



Smoothing Splines

A smoothing spline is a function g (x) that solves the following problem:

min
h

{ N∑
i=1

(yi − h (xi ))2 + λ

∫ [
h′′ (t)

]2 dt} (17)

, where λ ≥ 0 is a tuning parameter.

The regularizer Ω (h) =
∫

[h′′ (t)]2 dt is a roughness penalty. Hence λ
regulates the smoothness of the spline.

λ = 0 : g (x) interpolates every (xi , yi ).

λ→∞ : g (x) becomes the linear least squares line.

© Jiaming Mao



Smoothing Splines

The solution to (17) is a natural cubic spline with knots at every xi
22,23,24.

Recall that the least squares solution for natural cubic splines is
β̂LS = (Φ′Φ)−1 Φ′Y , where Φ (x) is the set of basis functions for natural
cubic splines. Solving (17) gives the shrinkage solution:

β̂ =
(
Φ′Φ + λΨ

)−1 Φ′Y

, where Ψ is an N × N matrix with Ψij =
∫

Φ′′i (t) Φ′′j (t) dt.

22Hence, we no longer have to choose knot placement!
23See Appendix II for proof.
24More generally, penalizing the squared k th derivative leads to a natural spline of

degree 2k − 1.
© Jiaming Mao



Wage Profile

fit = smooth.spline(Wage$age,Wage$wage)
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Appendix I: Gaussian Prior and L2 Regularization

Consider a normal linear model with Gaussian prior25:

βj ∼ N
(
0, τ2

)
, j = 0, . . . , p

y ∼ N
(
β′x , σ2

)
Then we have:

θ̂MAP = arg max
β


( N∏

i=1

1
σ
√
2π

e−
(yi−β

′xi )2

2σ2

) p∏
j=1

1
τ
√
2π

e−
β2

j
2τ2

 (18)

25Assume we know σ.
© Jiaming Mao



Appendix I: Gaussian Prior and L2 Regularization

(18) ⇒

θ̂MAP = arg max
β

log
( N∏

i=1

1
σ
√
2π

e−
(yi−β

′xi )2

2σ2

)
+ log

 p∏
j=1

1
τ
√
2π

e−
β2

j
2τ2


= arg max

β

−
N∑

i=1

(yi − β′xi )2

2σ2 −
p∑

j=0

β2
j

2τ2


= arg min

β


N∑

i=1

(
yi − β′xi

)2 + λ
p∑

j=0
β2

j


, where λ = σ2

τ2
26.

26Hence smaller values of τ correspond to stronger regularization
© Jiaming Mao



Appendix I: Laplace Prior and L1 Regularization
Consider a normal linear model with Laplace prior27:

βj ∼ Laplace (µ, b) , j = 0, . . . , p

y ∼ N
(
β′x , σ2

)
Then we have:

θ̂MAP = arg max
β


( N∏

i=1

1
σ
√
2π

e−
(yi−β

′xi )2

2σ2

) p∏
j=1

1
2b e

− |βj |
2b


= arg min

β


N∑

i=1

(
yi − β′xi

)2 + λ
p∑

j=0
|βj |


, where λ = σ2

b
28.

27Assume we know σ.
28Smaller values of b correspond to stronger regularization
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Appendix II: Smoothing Splines

Theorem
Let h be any differentiable function on [a, b] for which h (xi ) = zi for
i = 1, . . . , n. Suppose n > 2, and that g is the natural cubic spline
interpolant to the values z1, . . . , zn at points x1, . . . , xn with
a < x1 < · · · < xn < b. Then

∫
(h′′)2 ≥

∫
(g ′′)2 with equality if and only if

h = g.

© Jiaming Mao



Appendix II: Smoothing Splines

Proof.
Let ` = h − g . So ` (xi ) = 0 for i = 1, . . . , n.∫ (

h′′
)2 =

∫ (
g ′′ + `′′

)2 =
∫ (

g ′′
)2 + 2

∫
g ′′`′′ +

∫ (
`′′
)2 (19)

Since ∫ b

a
g ′′ (x) `′′ (x) dx = g ′′ (x) `′ (x)

∣∣b
a −

∫ b

a
`′ (x) g (3) (x) dx

= −
n−1∑
i=1

g (3)
(
x+

j

) ∫ xj+1

xj
`′ (x) dx

= −
n−1∑
i=1

g (3)
(
x+

j

)
(` (xj+1)− ` (xj)) = 0

, (19) ⇒
∫

(h′′)2 ≥
∫

(g ′′)2.
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