Model Selection and Regularization

Jiaming Mao
Xiamen University

Copyright © 2017-2019, by Jiaming Mao
This version: Fall 2019
Contact: jmao@xmu.edu.cn
Course homepage: jiamingmao.github.io/data-analysis

All materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International License.

Model Assessment and Model Selection

- Model assessment: evaluating a model's performance
- Model selection: choosing the model with the best performance
- Both model assessment and model selection require estimate of a model's out-of-sample error.

Model Assessment

To evaluate the performance of a model \mathcal{H}, we can randomly split our data into two parts:

- Training set: used to fit the model (select g from \mathcal{H})
- Test set: used to see how good the fit is (evaluate g's performance)

Training versus Testing

Training: $\operatorname{Pr}\left(\left|E_{\text {in }}(g)-E_{\text {out }}(g)\right|>\epsilon\right) \leq 4 m_{\mathcal{H}}(2 N) e^{-\frac{1}{8} \epsilon^{2} N}$
Testing: $\operatorname{Pr}\left(\left|E_{\text {test }}(g)-E_{\text {out }}(g)\right|>\epsilon\right) \leq 2 e^{-2 \epsilon^{2} N}$

- The generalization bound for test error $E_{\text {test }}(g)$ is much tighter.
- The test set is not biased, whereas the training set has an optimistic bias, since it is used to choose a hypothesis that looks good on it.
- The price for a test set is fewer data for training.

Model Selection

To choose the best model \mathcal{H}_{*} among a set of models $\mathbb{H}=\left\{\mathcal{H}_{0}, \mathcal{H}_{1}, \ldots, \mathcal{H}_{n}\right\}$, we can randomly split our data into three parts: a training set, a test set, and a validation (hold-out) set:

Model Selection

Then follow the following steps:
(1) Fit each model \mathcal{H}_{i} on the training set and obtain g_{i} for $i=0,1, \ldots, n$
(2) Use the validation set to evaluate the performance of each g_{i} and select the hypothesis $g_{*} \in \mathcal{H}_{*}$ with the smallest validation-set error \mathcal{H}_{*} is our selected model.
(3) Combine the training set and the validation set. Refit \mathcal{H}_{*} on this larger set ${ }^{1}$ to obtain $g_{* *}$ - this is our final selected hypothesis.
(4) Assess the performance of $g_{* *}$ on the test set.

This is called the validation set approach.

[^0]
Model Selection

pick \mathcal{H}_{*} with lowest $\mathrm{R}_{\text {out }}\left(\mathrm{g}^{*}\right)$, then retrain in \mathcal{H}_{*} on entire set

(C) Jiaming Mao

Model Selection

- A validation set is needed because we cannot use the test set to both help select the best model and assess the performance of the final hypothesis.
- Once a data set has been used in the learning process, it is "contaminated" - it obtains an optimistic bias, and the error calculated on the data set no longer has the tight bound in (2).

Model Selection

- Often times, the different models in \mathbb{H} can be indexed by a complexity parameter λ, which we call a hyperparameter. Choosing the best model amounts to finding the best value of λ.
- For example, if we are choosing among polynomial models of varying degrees, then λ is the degree of the polynomial.
- Using the validation set approach, the training set is used to fit each model with a given λ, the validation set is the set on which λ itself is fit, while the test set is used to estimate the true out-of-sample performance of the final hypothesis.

MPG and Horsepower

(C) Jiaming Mao

MPG and Horsepower

- Want to compare linear vs higher-order polynomial terms in a linear regression of miles per gallon (MPG) on horsepower on a data set of 392 vehicles.
- Suppose there exists an independent test data set somewhere else, so we only need this data set for model selection (without assessment). Then we can randomly split the 392 observations into two sets, a training set containing 196 of the data points, and a validation set containing the remaining 196 observations.

MPG and Horsepower

```
require(ISLR) # contains the data set 'Auto'
attach(Auto)
train <- sample(392,196) # draw a random subset from the sample
fit <- lm(mpg ~ horsepower, subset=train)
yhat <- predict(fit,Auto)
V.e <- (mpg - yhat)[-train] # validation set error
V.MSE <- mean(V.e^2) # validation set MSE
V.MSE
## [1] 25.72651
```


MPG and Horsepower

```
V.MSE <- rep (0,5)
for (i in 1:5){
    fit <- lm(mpg ~ poly(horsepower,i), subset=train)
    V.e <- (mpg - predict(fit,Auto)) [-train]
    V.MSE[i] <- mean(V.e^2)
}
V.MSE
## [1] 25.72651 20.43036 20.38533 20.30902 19.79689
```


MPG and Horsepower

Left: Validation-set MSE for a single split into training and validation data sets. Right: The validation method was repeated ten times, each time using a different random split.

The Validation Set Approach

Problems:

- Results can be highly variable, depending on which observations are included in the training set and which are in the validation set.
- The larger the validation set is, the smaller the training set has to be, hence the better the validation set errors are as estimates of true out-of-sample errors, but the poorer the model fits produced by the training set are.
- Conversely, the smaller the validation set, the better the model fits on the training set, but the poorer the validation set errors are as estimates of true out-of-sample errors.

Cross Validation

- The results of the validation set approach are variable due to the whims of a single random split. Thus, it might be better to randomly split the data multiple times and average the results - this is what cross-validation does.
- Like the bootstrap, cross-validation is a resampling method: these methods involve repeatedly drawing samples from a training set and refitting a model of interest on each sample in order to obtain additional information about the fitted model.

Cross Validation

- The cross-validation approach splits the original data into two parts: a training set and a test set, with no separate validation set.
- The training set is then randomly divided into K equal-sized folds.
- In turn, training is performed on $K-1$ folds (combined), and the remainder fold is used for evaluation. The K evaluation results are then averaged to produce an estimate of a model's out-of-sample error.

Cross Validation

All Data

Training data
Test data

Cross Validation

The K-fold cross-validation error of a model \mathcal{H} is

$$
C V_{(K)}(\mathcal{H})=\frac{1}{K} \sum_{k=1}^{K} E_{i n}^{(k)}\left(g^{(-k)}(\mathcal{H})\right)
$$

, where $g^{(-k)}(\mathcal{H})$ is the hypothesis selected by fitting \mathcal{H} on the training data with the $k^{\text {th }}$ fold removed, and $E_{i n}^{(k)}($.$) is the error calculated on the$ $k^{\text {th }}$ fold data ${ }^{2}$.

[^1]
Cross Validation

Setting $K=N$ yields the leave-one out cross-validation (LOOCV) error:

$$
C V_{(N)}(\mathcal{H})=\frac{1}{N} \sum_{i=1}^{N} E_{i n}^{(i)}\left(g^{(-i)}(\mathcal{H})\right)
$$

, in which case $g^{(-i)}(\mathcal{H})$ is the result of fitting \mathcal{H} on the entire training set with only the $i^{\text {th }}$ data point removed, and $E_{i n}^{(i)}($.$) is the difference$ between the prediction made by $g^{(-i)}(\mathcal{H})$ on the $i^{\text {th }}$ data point and its true value, according to the loss function used.

LOOCV

(C) Jiaming Mao

MPG and Horsepower

```
## LOOCV
require(boot)
LOOCV.MSE <- rep(0,5)
for (i in 1:5){
    fit <- glm(mpg ~ poly(horsepower,i))
    LOOCV.MSE[i] <- cv.glm(Auto,fit)$delta[1]
}
LOOCV .MSE
## [1] 24.23151 19.24821 19.33498 19.42443 19.03321
```


MPG and Horsepower

```
## 10-fold CV
CV.MSE <- rep(0,5)
for (i in 1:5){
    fit <- glm(mpg ~ poly(horsepower,i))
    CV.MSE[i] <- cv.glm(Auto,fit,K=10)$delta[1]
}
CV.MSE
## [1] 24.17328 19.27789 19.43292 19.42324 19.03107
```


MPG and Horsepower

10-fold CV

Left: The LOOCV error curve. Right: 10 -fold CV was run nine separate times, each with a different random split of the data into ten folds. The figure shows the nine slightly different CV error curves.

Choice of K

- When N is large, LOOCV can be computationally expensive: need to fit the model N times!
- LOOCV gives almost unbiased estimate of the out-of-sample error, since its training set contains almost the entire data set.
- However, the LOOCV estimate has high variance: when we perform LOOCV, we are in effect averaging the outputs of N fitted models, each of which is trained on an almost identical set of observations. Therefore, these outputs are highly positively correlated with each other.
- There exists a bias-variance tradeoff: when K is small, bias is high and variance is low. When K is large, bias is low and variance is high.
- Rule of thumb: $K=5$ or $K=10$.

Cross-Validation for Regression

Left: target function (black), linear fit (orange), smoothing spline fits (blue \& green). Right: training error (grey), prediction error (red), $\operatorname{Var}(\mathrm{e})$ (dashed).

Cross-Validation for Regression

Left: target function (black), linear fit (orange), smoothing spline fits (blue \& green). Right: training error (grey), prediction error (red), Var(e) (dashed).

Cross-Validation for Regression

Left: target function (black), linear fit (orange), smoothing spline fits (blue \& green). Right: training error (grey), prediction error (red), $\operatorname{Var}(\mathrm{e})$ (dashed).

Cross-Validation for Regression

True and estimated prediction error for the simulated data sets. True prediction error (blue), LOOCV estimate (black dashed), 10-fold CV estimate (orange). Crosses indicate the minimum of each of the error curves.

Cross-Validation for Classification

Degree=1

Degree=2

Two-dimensional classification data. Purple dashed: the Bayes decision boundary; Black: estimated decision boundaries from linear (left) and quadratic (right) logistic regressions.

Cross-Validation for Classification

Degree=3

Degree=4

Two-dimensional classification data. Purple dashed: the Bayes decision boundary; Black: estimated decision boundaries from cubic (left) and quartic (right) logistic regressions.

Cross-Validation for Classification

Logistic regression using polynomial functions of the predictors. True misclassification rate (brown), training error (blue), 10-fold CV error (black).

Cross-Validation for Classification

KNN classifier. True misclassification rate (brown), training error (blue), 10 -fold CV error (black).

Note on Cross-Validation

Note

In choosing the K folds at random, we are assuming that $\left(x_{i}, y_{i}\right)$ are independently drawn from the underlying population $p(x, y)$, i.e., our data $\mathcal{D}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$ constitutes a random sample.

This would not be true in structured problems where $\left(x_{i}, y_{i}\right)$ are not independent - for example, when \mathcal{D} is time-series data ${ }^{a}$.
${ }^{a}$ See here for discussions on cross-validation for time series data.

Alternatives to CV: Information Criteria

Suppose for dependent variable y, we have two potential predictors, x_{1} and x_{2}. If we limit our attention to linear models without interactions, we could fit the following four models:

$$
\begin{aligned}
& \text { Model A: } y_{i}=\beta_{0}+e_{i} \\
& \text { Model B: } y_{i}=\beta_{0}+\beta_{1} x_{i 1}+e_{i} \\
& \text { Model C: } y_{i}=\beta_{0}+\beta_{2} x_{i 2}+e_{i} \\
& \text { Model D: } y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+e_{i}
\end{aligned}
$$

- Model A is the null model, which contains no predictors.
- Model D is the full model, which contains all potential predictors.

Alternatives to CV: Information Criteria

We could use CV to select the best model. Alternatively, we can use information criteria for model selection. These are metrics that make adjustment to the training error in order to account for the bias due to overfitting.

Akaike's Information Criterion (AIC)

$$
\text { AIC }=-2 \log \mathcal{L}+2 p=\text { Deviance }+2 p
$$

, where \mathcal{L} is the value of the likelihood function ${ }^{3}$, and p is the number of parameters.

Bayesian Information Criterion (BIC)

$$
\mathrm{BIC}=-2 \log \mathcal{L}+p \log N=\text { Deviance }+p \log N
$$

, where N is the number of data points.
${ }^{3}$ achieved at the maximum-likelihood estimate.

Alternatives to CV: Information Criteria

- For both AIC and BIC, smaller values are better. We can use them for model selection by choosing the model with the minimum AIC or BIC.
- The term $2 p$ in AIC and $p \log N$ in BIC can be regarded as penalty terms that favor simpler models over more complicated ones.
- Both AIC and BIC have theoretical justifications that rely on asymptotic arguments.
- Since $\log N>2$ for $N>7$, BIC generally increases with p faster than AIC. Thus BIC tends to lead to the selection of smaller models than AIC.

MPG and Horsepower

```
require(foreach)
foreach (i = 1:5) %do% {
    model <- lm(mpg ~ poly(horsepower,i))
    c(AIC(model), BIC(model))
}
## [[1]]
## [1] 2363.324 2375.237
##
## [[2]]
## [1] 2274.354 2290.239
##
## [[3]]
## [1] 2275.531 2295.388
##
## [[4]]
## [1] 2276.108 2299.936
##
## [[5]]
## [1] 2268.663 2296.462
```


Subset Selection

- In general, given p potential predictors in a linear model, we can use CV or information criteria to choose the best subset of predictors. This is also called variable selection.
- However, given p potential predictors, there are 2^{p} possible models each involves a subset of the p predictors. Comparing all of them becomes computationally infeasible when p is large.
- Forward stepwise selection is a computationally efficient alternative that begins with the null model, and then adds predictors one-at-a-time.

Subset Selection

Forward Stepwise Selection

(1) Let \mathcal{M}_{0} denote the null model.
(2) Fit all univariate models. Choose the one with the best in-sample fit (smallest RSS, highest R^{2}) and add that variable - say $x_{(1)}$ - to \mathcal{M}_{0}. Call the resulting model \mathcal{M}_{1}.
(3) Fit all bivariate models that include $x_{(1)}: y \sim \beta_{0}+\beta_{(1)} x_{(1)}+\beta_{j} x_{j}$, and add x_{j} from the one with the best in-sample fit to \mathcal{M}_{1}. Call the resulting model \mathcal{M}_{2}.
(9) Continue until your model selection rule (cross-validation error, AIC, BIC) is lower for the current model than for any of the models that add one variable.

Subset Selection

- Similarly, we can also do backward stepwise selection: start with the full model and remove predictors one-at-a-time.
- Forward is in general better than backward:
- The full model can be expensive to fit, while the null model is usually available in closed form.
- The full model fit has high variance (because it is usually overfit). The null model is always the same.
- Backward selection requires $N>p$ (so that the full model can be fit). Forward selection can be used even when $p>N$.
- Neither forward nor backward selection is guaranteed to find the best subset of predictors.

Credit Card Balance

```
require(AER)
credit <- read.csv("Credit.csv")
fit <- lm(Balance~.,credit)
coeftest(fit)
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr}\operatorname{Pr}(>|t|
## (Intercept) -484.017314 26.076322 -18.5616<2.2e-16 ***
## Income -7.798884 0.233752 -33.3639<2.2e-16 ***
## Limit 0.191288 0.032555 5.8759 9.011e-09 ***
## Rating 1.129091 0.487398 2.3166 0.02104 *
## Cards 17.919886 4.329445 4.1391 4.274e-05 ***
## Age -0.638650 0.293004 -2.1797 0.02988 *
## GenderFemale -10.327215 9.896964 -1.0435 0.29737
## StudentYes 425.498590 16.608864 25.6188<2.2e-16 ***
## MarriedYes -7.482805 10.249865 -0.7300 0.46580
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '` ' Jiaming Mao
```


Credit Card Balance

```
require(leaps)
all.fit <- regsubsets(Balance~., credit)
all <- summary(all.fit)
all$outmat
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \#\# & & Income & Limit & Rating & Cards & Age & Gend & Stu & & \\
\hline \#\# 1 & ( 1 ) & " " & " " & "*" & " " & " " & " " & " " & " & " \\
\hline \#\# 2 & ( 1 ) & "*" & " " & "*" & " " & " " & " " & " " & " & " \\
\hline \#\# 3 & ( 1 ) & "*" & " " & "*" & " " & " " & " " & "*" & " & " \\
\hline \#\# 4 & ( 1 ) & "*" & "*" & " " & "*" & " " & " " & "*" & " & " \\
\hline \#\# 5 & ( 1 ) & "*" & "*" & "*" & "*" & " " & " " & "*" & " & " \\
\hline \#\# 6 & ( 1 ) & "*" & "*" & "*" & "*" & "*" & " " & "*" & " & " \\
\hline \#\# 7 & ( 1 ) & "*" & "*" & "*" & "*" & "*" & "*" & "*" & " & " \\
\hline \#\# 8 & ( 1 ) & "*" & "*" & "*" & "*" & "*" & "*" & "*" & "* & \\
\hline
\end{tabular}
```


Credit Card Balance

```
# Mallow's Cp statistic is equivalent to AIC in the case of
# linear models with Gaussian errors
all$cp # Mallow's Cp
```



```
## [7] 7.532958 9.000000
all$bic
## [1] -535.9468 -814.1798 -1173.3585 -1198.0527 -1197.0957 -1195.7321 -1
## [8] -1185.4324
```


Credit Card Balance

Credit Card Balance

```
# best model according to AIC
coef(all.fit,6)
\begin{tabular}{lrrrrrr} 
\#\# & (Intercept) & Income & Limit & Rating & Cards & \\
\#\# & -493.7341870 & -7.7950824 & 0.1936914 & 1.0911874 & 18.2118976 & -0.62 \\
\#\# & StudentYes & & & & & \\
\#\# & 425.6099369 & & & &
\end{tabular}
# best model according to BIC
coef(all.fit,4)
\#\# (Intercept) Income Limit Cards StudentYes
## -499.7272117 -7.8392288 0.2666445 23.1753794 429.6064203
```


Credit Card Balance

```
## Forward stepwise selection using AIC
null <- lm(Balance~1,credit)
full <- lm(Balance~.,credit)
fwd <- step(null, scope=formula(full), direction="forward")
## Start: AIC=4905.56
## Balance ~ 1
##
## Df Sum of Sq RSS AIC
## + Rating 1 62904790 21435122 4359.6
## + Limit 1 62624255 21715657 4364.8
## + Income 1 18131167 66208745 4810.7
## + Student 1 5658372 78681540 4879.8
## + Cards 1 630416 83709496 4904.6
## <none> }843399124905.
## + Gender 1 38892 84301020 4907.4
## + Married 1 2715 84337197 4907.5
## + Age 1 284 84339628 4907.6
##
```


Credit Card Balance

```
##
## Step: AIC=4359.63
## Balance ~ Rating
##
## Df Sum of Sq RSS AIC
## + Income 1 10902581 10532541 4077.4
## + Student 1 5735163 15699959 4237.1
## + Age 1 649110 20786012 4349.3
## + Cards 1 138580 21296542 4359.0
## + Married 1 118209 21316913 4359.4
## <none> 21435122 4359.6
## + Gender 1 16065 21419057 4361.3
## + Limit 1 7960 21427162 4361.5
##
```


Credit Card Balance

```
##
## Step: AIC=4077.41
## Balance ~ Rating + Income
##
## Df Sum of Sq RSS AIC
## + Student 1 6305322 4227219 3714.2
## + Married 1 95068 10437473 4075.8
## + Limit 1 94545 10437996 4075.8
## + Age 1 90286 10442255 4076.0
## <none> 10532541 4077.4
## + Cards 1 2094 10530447 4079.3
## + Gender 1 948 10531593 4079.4
##
```


Credit Card Balance

```
##
## Step: AIC=3714.24
## Balance ~ Rating + Income + Student
##
## Df Sum of Sq RSS AIC
## + Limit 1 194718 4032502 3697.4
## + Age 1 44620 4182600 3712.0
## <none> 4227219 3714.2
## + Married 1 13083 4214137 3715.0
## + Gender 1 12168 4215051 3715.1
## + Cards 1 10608 4216611 3715.2
##
```


Credit Card Balance

```
##
## Step: AIC=3697.37
## Balance ~ Rating + Income + Student + Limit
##
## Df Sum of Sq RSS AIC
## + Cards 1 166410 3866091 3682.5
## + Age 1 37952 3994549 3695.6
## <none> 4032502 3697.4
## + Gender 1 133454019157 3698.0
## + Married 1 6660 4025842 3698.7
##
```


Credit Card Balance

```
##
## Step: AIC=3682.52
## Balance ~ Rating + Income + Student + Limit + Cards
##
## Df Sum of Sq RSS AIC
## + Age 1 44472 3821620 3679.9
## <none> 3866091 3682.5
## + Gender 1 11350 3854741 3683.3
## + Married 1 3121 3862970 3684.2
##
```


Credit Card Balance

```
##
## Step: AIC=3679.89
## Balance ~ Rating + Income + Student + Limit + Cards + Age
##
## Df Sum of Sq RSS AIC
## <none> 3821620 3679.9
## + Gender 1 10860.9 3810759 3680.7
## + Married 1 5450.6 3816169 3681.3
##
```


Credit Card Balance

```
coeftest(fwd)
##
## t test of coefficients:
##
\begin{tabular}{lrrrr} 
\#\# & Estimate & Std. Error & t value & \(\operatorname{Pr}(>|t|)\) \\
\#\# (Intercept) & -493.734187 & 24.824765 & \(-19.8888<2.2 \mathrm{e}-16\) & \(* * *\) \\
\#\# Rating & 1.091187 & 0.484804 & 2.2508 & 0.02495
\end{tabular}
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Credit Card Balance

```
## Forward stepwise selection using BIC
n <- nrow(credit)
fwd <- step(null, scope=formula(full), direction="forward", k=log(n))
coeftest(fwd)
##
## t test of coefficients:
##
\begin{tabular}{|c|c|c|c|c|c|}
\hline \#\# & Estimate & Std. Error & t value & Pr & \\
\hline \#\# (Intercept) & -526.155523 & 19.746614 & -26.6454 & < \(2.2 \mathrm{e}-16\) & \\
\hline \#\# Rating & 1.087901 & 0.486995 & 2.2339 & 0.02605 & \\
\hline \#\# Income & -7.874924 & 0.231455 & -34.0236 & < \(2.2 \mathrm{e}-16\) & \\
\hline \# StudentYes & 426.850146 & 16.574025 & 25.7542 & \(2.2 \mathrm{e}-16\) & \\
\hline \#\# Limit & 0.194409 & 0.032527 & 5.9768 & 5.099e-09 & \\
\hline \# Cards & 17.85173 & 4.33488 & 4.118 & 656e- & \\
\hline
\end{tabular}
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


The Bias-Variance Trade-off

The goal of model selection is to choose the model (out of the set of candidate models) that can best balance the bias-variance tradeoff to achieve the smallest out-of-sample error.

In the case of linear models, we have:

$$
E\left[\left(y-x^{\prime} \widehat{\beta}\right)^{2}\right]=\operatorname{Var}\left(x^{\prime} \widehat{\beta}\right)+\left[\operatorname{bias}\left(x^{\prime} \widehat{\beta}\right)\right]^{2}+\operatorname{Var}(e)
$$

- The OLS estimate $\widehat{\beta}^{L S}$ is unbiased: $E\left[\widehat{\beta}^{L S}\right]=\beta^{*}$. Hence $\operatorname{bias}\left(x^{\prime} \widehat{\beta}^{L S}\right)=E\left[x^{\prime} \beta^{*}-x^{\prime} \hat{\beta}^{L S}\right]=0$. What about $\operatorname{Var}\left(x^{\prime} \widehat{\beta}^{L S}\right) ?$

The Gauss-Markov Theorem

Note that $\widehat{\beta}^{L S}$ is a linear function of $Y: \hat{\beta}^{L S}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y=\sum_{i} w_{i} y_{i}$, where $w_{i}=\left(X^{\prime} X\right)^{-1} x_{i}$.

Gauss-Markov Theorem

Under the assumption that
(1) The true CEF is linear: $E[y \mid x]=x^{\prime} \beta^{*}$
(0) Homoskedasticity: $E\left[\left(e^{*}\right)^{2} \mid x\right]=\sigma^{2}$

The OLS estimator $\widehat{\beta}^{L S}$ is BLUE: Best Linear Unbiased Estimator, in the sense that among all unbiased linear estimators (estimators that are linear functions of $Y), \widehat{\beta}^{L S}$ has the smallest variance.

The Gauss-Markov Theorem

Under the assumptions of Gauss-Markov,

$$
\begin{equation*}
E\left[\left(y-x^{\prime} \hat{\beta}^{L S}\right)^{2}\right]=\operatorname{Var}\left(x^{\prime} \hat{\beta}^{L S}\right)+\sigma^{2} \tag{3}
\end{equation*}
$$

- The theorem says that if we have any other unbiased linear estimator $\widehat{\beta}$, then $\operatorname{Var}\left(x^{\prime} \widehat{\beta}^{L S}\right) \leq \operatorname{Var}\left(x^{\prime} \widehat{\beta}\right)$.
- But can we do better - reduce the prediction error - if we are willing to allow a little bias in exchange for a larger reduction in variance?

Exploring the Bias-Variance Trade-off

Exploring the Bias-Variance Trade-off

(3) \Rightarrow

$$
\begin{aligned}
E_{\mathcal{D}, x}\left[\left(y-x^{\prime} \widehat{\beta}^{L S}\right)^{2}\right] & \approx \frac{1}{N} \sum_{i=1}^{N} E_{\mathcal{D}}\left[\left(y_{i}-x_{i}^{\prime} \widehat{\beta}^{L S}\right)^{2}\right] \\
& =\frac{1}{N} \sum_{i=1}^{N} \operatorname{Var}\left(x_{i}^{\prime} \widehat{\beta}^{L S}\right)+\sigma^{2} \\
& =\frac{1}{N} \operatorname{trace}\left(\operatorname{Var}\left(x \widehat{\beta}^{L S}\right)\right)+\sigma^{2} \\
& \approx \frac{1}{N} \operatorname{trace}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \sigma^{2}+\sigma^{2} \\
& =\frac{1}{N}(1+p) \sigma^{2}+\sigma^{2}
\end{aligned}
$$

, i.e., the prediction error scales linearly with the number of predictors p.

Simulation 1

$N=50, p=30 . y \sim \mathcal{N}\left(x^{\prime} \beta^{*}, 1\right)$, where $\beta^{*} \in \mathbb{R}^{30}$ with 10 "large" coefficients (between 0.5 and 1) and 20 "small" ones (between 0 and 0.3).

Exploring the Bias-Variance Trade-off

- Each additional predictor adds the same amount of variance $\frac{\sigma^{2}}{N}$, regardless of whether its true coefficient is large or small (or zero).
- So in this example, we are "spending" variance in trying to fit truly small coefficients-20 of them, out of 30 total.
- We can do better by shrinking small coefficients towards zero, incurring some bias, so as to reduce the variance. Methods that do this are called shrinkage methods.

Simulation 1

(C) Jiaming Mao

Simulation 1

Linear regression:

$$
\begin{aligned}
\text { Square bias } & \approx 0.006 \\
\text { Variance } & \approx 0.627 \\
\text { prediction error } & \approx 1+0.006+0.627=1.633
\end{aligned}
$$

Ridge regression, at its best:
Square bias ≈ 0.077
Variance ≈ 0.403
prediction error $\approx 1+0.077+0.403=1.48$

Ridge Regression

$$
\begin{equation*}
\widehat{\beta}^{R}=\arg \min _{\beta}\{\sum_{i=1}^{N}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2}+\underbrace{\sum_{j=1}^{p} \beta_{j}^{2}}_{\text {penalty }}\} \tag{4}
\end{equation*}
$$

, where $\lambda \geq 0$ is a tuning parameter that controls the strength of the penalty term, which has the effect of shrinking the estimates towards zero.

- $\lambda=0 \Rightarrow \widehat{\beta}^{R}=\widehat{\beta}^{L S 4}$
- $\lambda=\infty \Rightarrow \widehat{\beta}_{1}^{R}=\cdots=\widehat{\beta}_{p}^{R}=0^{5}$

[^2]
Ridge Regression

An equivalent way to write the ridge problem is:

$$
\begin{aligned}
\widehat{\beta}^{R}= & \arg \min _{\beta}\left\{\sum_{i=1}^{N}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2}\right\} \\
& \text { subject to } \sum_{j=1}^{p} \beta_{j}^{2} \leq C
\end{aligned}
$$

(4) is the Lagrangian form of (5). There is a one-to-one correspondence between λ in (4) and C in (5).

Ridge Regression

- Least square estimates are scale equivariant: multiplying x_{j} by a constant c leads to a scaling of $\widehat{\beta}_{j}$ by $1 / c . \widehat{\beta}_{j} x_{j}$ remains the same.
- Ridge regression estimates are not scale equivariant. They can change substantially when multiplying a given predictor by a constant. Therefore, $x_{i j}$ need to be standardized before applying ridge regression.
- In addition, note that β_{0} is not penalized: we do not shrink $\widehat{\beta}_{0}$. Otherwise we could add some constant c to y and the solution would be different.

Ridge Regression

Let $\widetilde{x}_{i j}=\frac{x_{i j}-\bar{x}_{j}}{\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i j}-\bar{x}_{j}\right)^{2}}}$, so that $x_{i j} \mathrm{~s}$ are both centered and standardized.
If we use $\widetilde{x}_{i j}$ as the regressors, then $\widehat{\beta}_{0}=\bar{y}^{6}$ and we can estimate the the rest of the $\beta \mathrm{s}$ by a ridge regression without intercept:

$$
\begin{equation*}
\widehat{\beta}^{R}=\arg \min _{\beta}\left\{\sum_{i=1}^{N}\left(\widetilde{y}_{i}-\widetilde{x}_{i}^{\prime} \beta\right)^{2}+\lambda\|\beta\|_{2}^{2}\right\} \tag{6}
\end{equation*}
$$

, where $\|\cdot\|_{2}$ denotes the ℓ_{2} norm, $\widetilde{y}_{i}=y_{i}-\bar{y}, \widetilde{x}_{i}=\left[\widetilde{x}_{i 1}, \ldots, \widetilde{x}_{i p}\right]^{\prime}$, and $\beta=\left[\beta_{1}, \ldots, \beta_{p}\right]^{\prime}$.
${ }^{6}$ This is true as long as $\widetilde{x}_{i j}$ are centered.

Ridge Regression

(6) \Rightarrow

$$
\begin{equation*}
\widehat{\beta}^{R}=\left(\widetilde{X}^{\prime} \widetilde{X}+\lambda I\right)^{-1} \widetilde{X}^{\prime} Y \tag{7}
\end{equation*}
$$

, where I is the $p \times p$ identity matrix, and \widetilde{X} is centered and standardized.
In the case that \widetilde{X} is orthonormal ${ }^{\top},(7) \Rightarrow$

$$
\begin{equation*}
\widehat{\beta}_{j}^{R}=\frac{\widehat{\beta}_{j}^{L S}}{1+\lambda} \tag{8}
\end{equation*}
$$

${ }^{7}$ so that $\widetilde{X}^{\prime} \widetilde{X}=1$

Ridge Regression

To choose λ, we can treat λ is as a hyperparameter and select its value via cross-validation:

- Given a grid of λ values, perform cross-validation on the training set to pick the λ for which the cross-validation error is smallest.
- Re-fit the model with the selected λ using all the training data.
- Benchmark the performance of the final fitted model using a test set.

Simulation 1

Ridge regression coefficients at $\lambda=25$

Simulation 1

(C) Jiaming Mao

Simulation 2

$N=50, p=30 . y \sim \mathcal{N}\left(x^{\prime} \beta^{*}, 1\right)$, where $\beta^{*} \in \mathbb{R}^{30}$ with all 30 coefficients between 0.5 and 1.

(C) Jiaming Mao

Simulation 2

(C) Jiaming Mao

Credit Card Balance

```
require(glmnet)
x <- model.matrix(Balance~.,credit)[,-1] # no intercept
y <- credit$Balance
ridgefit <- glmnet(x,y,alpha=0,lambda=0.01)
coef(ridgefit)
## 9 x 1 sparse Matrix of class "dgCMatrix"
## s0
## (Intercept) -479.7851081
## Income -7.8002927
## Limit 0.2049782
## Rating 0.9251803
## Cards 18.9116337
## Age -0.6364639
## GenderFemale -10.3247237
## StudentYes 426.0874930
## MarriedYes -7.0597648
```


Credit Card Balance

```
ridgefit <- glmnet(x,y,alpha=0,lambda=1e10)
coef(ridgefit)
## 9 x 1 sparse Matrix of class "dgCMatrix"
## s0
## (Intercept) 5.200149e+02
## Income 2.777310e-07
## Limit 7.881306e-09
## Rating 1.178376e-07
## Cards 1.331034e-06
## Age 2.245918e-09
## GenderFemale 9.061130e-07
## StudentYes 1.820460e-05
## MarriedYes -2.455471e-07
```


Credit Card Balance

```
ridgefit <- glmnet(x,y,alpha=0) # automatically select a range of lambda
dim(coef(ridgefit))
## [1] 9 100
c(ridgefit$lambda[1],ridgefit$lambda[50],ridgefit$lambda[100])
## [1] 396562.69957 4154.45333 39.65627
coef(ridgefit)[,50]
\begin{tabular}{lrrrrrr} 
\#\# & (Intercept) & Income & Limit & Rating & Cards & \\
\#\# & 339.02562071 & 0.44648135 & 0.01505380 & 0.22506908 & 2.77187416 & -0.051
\end{tabular}
## GenderFemale StudentYes MarriedYes
## 1.76037503 39.44486798 -0.95049050
```


Credit Card Balance

Credit Card Balance

(C) Jiaming Mao

The Lasso

The lasso ${ }^{8}$ is defined as:

$$
\begin{equation*}
\widehat{\beta}^{L}=\arg \min _{\beta}\left\{\sum_{i=1}^{N}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2}+\lambda \sum_{j=1}^{p}\left|\beta_{j}\right|\right\} \tag{9}
\end{equation*}
$$

Equivalently,

$$
\begin{align*}
\widehat{\beta}^{L}= & \arg \min _{\beta}\left\{\sum_{i=1}^{N}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2}\right\} \tag{10}\\
& \text { subject to } \sum_{j=1}^{p}\left|\beta_{j}\right| \leq C
\end{align*}
$$

${ }^{8}$ acronym for: Least Absolute Selection and Shrinkage Operator. Not to be confused with wonder woman's weapon of choice.

The Lasso

Centering and standardizing $x_{i j} \Rightarrow$

$$
\begin{equation*}
\widehat{\beta}^{L}=\arg \min _{\beta}\left\{\sum_{i=1}^{N}\left(\widetilde{y}_{i}-\widetilde{x}_{i}^{\prime} \beta\right)^{2}+\lambda\|\beta\|_{1}\right\} \tag{11}
\end{equation*}
$$

, where $\|\cdot\|_{1}$ denotes the ℓ_{1} norm, $\tilde{y}_{i}=y_{i}-\bar{y}, \widetilde{x}_{i j}=\frac{x_{i j}-\bar{x}_{j}}{\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i j}-\bar{x}_{j}\right)^{2}}}$, and $\beta=\left[\beta_{1}, \ldots, \beta_{p}\right]^{\prime}$.

The Lasso

There is in general no closed-form solution to (11). In the case that X is orthonormal, we have:

$$
\widehat{\beta}^{L}= \begin{cases}\widehat{\beta}^{L S}-\frac{\lambda}{2} & \text { if } \widehat{\beta}^{L S}>\frac{\lambda}{2} \\ \widehat{\beta}^{L S}+\frac{\lambda}{2} & \text { if } \widehat{\beta}^{L S}<-\frac{\lambda}{2} \\ 0 & \text { if }\left|\widehat{\beta}^{L S}\right| \leq \frac{\lambda}{2}\end{cases}
$$

The Lasso

- As with ridge regression, the lasso shrinks the coefficient estimates towards zero.
- However, in the case of the lasso, the ℓ_{2} penalty has the effect of forcing some of the coefficient estimates to be exactly equal to zero when the tuning parameter is sufficiently large.
- Hence, the lasso performs variable selection. We say that the lasso yields sparse models - that is, models that involve only a subset of the variables.
- As in ridge regression, selecting a good value of λ for the lasso is critical and is in practice done via cross-validation.

The Lasso

Contours of the error and constraint functions for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions, $\left|\beta_{1}\right|+\left|\beta_{2}\right| \leq C$ and $\beta_{1}^{2}+\beta_{2}^{2} \leq C$, while the red ellipses are the contours of the RSS.

The Lasso

The ridge regression and the lasso coefficient estimates for a simple setting with $N=p$ and X being orthonormal.

Credit Card Balance

```
lassofit <- glmnet(x,y,alpha=1,lambda=0.01)
coef(lassofit)
## 9 x 1 sparse Matrix of class "dgCMatrix"
## s0
## (Intercept) -479.5814236
## Income -7.7997555
## Limit 0.2056525
## Rating 0.9149775
## Cards 18.9546633
## Age -0.6358133
## GenderFemale -10.3038053
## StudentYes 426.0922168
## MarriedYes -7.0184389
```


Credit Card Balance

```
lassofit <- glmnet(x,y,alpha=1,lambda=100)
coef(lassofit)
## 9 x 1 sparse Matrix of class "dgCMatrix"
## s0
## (Intercept) -157.92073077
## Income
## Limit 0.01822877
## Rating 1.64828689
## Cards
## Age
## GenderFemale
## StudentYes 65.68634041
## MarriedYes
```


Credit Card Balance

```
lassofit <- glmnet(x,y,alpha=1) # automatically select a range of lambda
```


Comparing the Lasso and Ridge Regression

Plots of squared bias (black), variance (green), and prediction error (purple) for the lasso (solid) and ridge (dashed) on a simulated data set with $p=45$ and $n=50$. All 45 predictors are related to the response.

Comparing the Lasso and Ridge Regression

Comparison of squared bias, variance and prediction error between the lasso (solid) and ridge (dashed). Now only two predictors in the simulated data set are related to the response.

Comparing the Lasso and Ridge Regression

Ten-fold cross-validation error for the lasso, applied to the simulated data set with 2 out of 45 predictors related to the response.

U.S. Election

- We want to predict whether a person voted for Clinton or Trump in the 2016 U.S. presidential election using demographic variables taken from the 2018 General Social Survey (GSS).
- Selected variables include: age, sex, income, work, marriage, family information, political party affiliation, etc.

U.S. Election

```
gss <- read.csv("GSS2018.csv")
dim(gss)
## [1] 455 50
names(gss)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \#\# & [1] & "age" & "sex" & "sibs" & "size" & "adults" & "childs" \\
\hline \#\# & [7] & "class" & "coninc" & "actssoc" & "attend" & "born" & "cappun" \\
\hline \#\# & [13] & "courts" & "degree" & "earnrs" & "ethnum" & "famgen" & "finalter" \\
\hline \#\# & [19] & "finrela" & "fund" & "hhrace" & "madeg" & "marital" & "mobile16" \\
\hline \#\# & [25] & "natmass" & "natpark" & "othlang" & "natchld" & "sexornt" & "partyid" \\
\hline \#\# & [31] & "phone" & "polviews" & "pres16" & "prestg10" & "natsci" & "quallife" \\
\hline \#\# & [37] & "race" & "raclive" & "rank" & "relig" & "reliten" & "satfin" \\
\hline \#\# & [43] & "satsoc" & "sei10" & "vetyears" & "vote12" & "happy" & "weekswrk" \\
\hline \#\# & [49] & "wrkslf" & "wrkstat" & & & & \\
\hline
\end{tabular}
```


U.S. Election

```
Y <- gss$pres16 # GSS Q: Did you vote for Clinton or Trump?
summary(Y)
## Clinton Trump
X <- model.matrix(pres16 ~.,gss)[,-1] # create dummies for categorical vars
dim(X)
## [1] 455 128
```

(C) Jiaming Mao

U.S. Election

```
#############################
# Logistic Lasso Regression #
#############################
require(glmnet)
# fit the lasso with a range of automatically selected lambdas
lasso.all <- glmnet(X,Y,alpha=1,family="binomial")
cv.lasso <- cv.glmnet(X,Y,alpha=1,family="binomial") # cross-validation
# choose lambda associated with min CV error (or plus 1se)
lambda.star <- cv.lasso$lambda.1se # Alternatively: cv.lasso$lambda.min
# fit the lasso with optimal lambda
fit = glmnet(X,Y,alpha=1,lambda=lambda.star,family="binomial")
```


U.S. Election

```
plot(lasso.all,xvar="lambda")
```


(C) Jiaming Mao

U.S. Election

```
plot(cv.lasso)
```


(C) Jiaming Mao

U.S. Election

```
source('lassosummary.R') # external function
lassosummary(fit)
## beta
## sexmale 0.01785683
## cappunoppose -0.77766891
## hhraceblack -0.73658259
## hhracewhite 0.20921740
## maritalmarried 0.06177141
## maritalnever married -0.21100431
## natchldtoo little -0.11405573
## partyidind,near rep 1.22815699
## partyidnot str democrat -0.54035075
## partyidnot str republican 1.63637730
## partyidother party 0.49325142
## partyidstrong democrat -1.26057401
## partyidstrong republican 2.60413814
## polviewsliberal -0.03666117
## polviewsslightly liberal -0.04752788
## racewhite 0.41245491
## religprotestant 0.05175686
## satfinsatisfied 0.02233638
```


Considerations in High Dimensions

- Most traditional statistical techniques for regression and classification are intended for the low-dimensional settings in which $N \gg p$.
- Settings in which p is large relative to N are often referred to as high-dimensional. When $p>N$, classical approaches such as least squares linear regression can no longer be applied.

Considerations in High Dimensions

Left: Least squares regression in the low-dimensional setting. Right: Least squares regression with $N=2$ observations and two parameters to be estimated.

Considerations in High Dimensions

Number of Variables

Number of Variables

R^{2}, training MSE, and test MSE on a sample with $N=20$ observations, as more (unrelated) features are added to the model.

Considerations in High Dimensions

- In high dimensions, even linear models are too flexible.
- When $p>N$, information criteria such as AIC and BIC are not appropriate.
- Multicollinearity can be extreme in high-dimensional problems.
- This means that we can never know exactly which variables (if any) truly are predictive of the outcome, and we can never identify the best coefficients for use in the regression. At most, we can hope to assign large regression coefficients to variables that are correlated with the variables that truly are predictive of the outcome.

Multi-Stage Lasso

Consider the following linear model:

$$
\begin{equation*}
y=x^{\prime} \beta+e \tag{12}
\end{equation*}
$$

Let β^{*} be the population least squares coefficients:

$$
\beta^{*}=\underset{\beta}{\arg \min } E\left[\left(y-\beta^{\prime} x\right)^{2}\right]
$$

When β^{*} is high-dimensional, but contains mostly zeros, i.e. when the number of non-zero population coefficients $\ll p$, we say there is sparsity.

Multi-Stage Lasso

In high-dimensional sparse settings, we may be able to improve upon the results of the lasso by running a multi-stage procedure:

Multi-Stage Lasso (incl. Post-Lasso OLS)

Stage 1 In the first stage, estimate (12) by the lasso.
Stage 2 Run the lasso again on the variables selected by the first stage.

Alternatively, run OLS on the selected variables in stage 2. Note that this corresponds to running the lasso in the second stage with $\lambda=0$.

Multi-Stage Lasso

- Intuitively, the first stage focuses on variable selection, while the second stage focuses on (shrinkage) estimation ${ }^{9}$.
- Since the variables in the second stage have less "competition" from noise variables, applying the lasso or OLS to these selected variables could result in better estimates.

[^3]
Simulation 3

$$
\begin{aligned}
x_{1}, \ldots, x_{99}, e & \sim \sim^{\text {i.i.d. }} \mathcal{N}(0,1) \\
y & =\beta_{1} x_{1}+\cdots+\beta_{99} x_{99}+e
\end{aligned}
$$

, where

$$
\begin{aligned}
& \beta_{1}=\cdots=\beta_{5}=5 \\
& \beta_{6}=\cdots=\beta_{99}=0
\end{aligned}
$$

Simulation 3

```
# Training Set
n = 100 # sample size
p = 99 # number of variables
s = 5 # number of non-zero coefficients
X = matrix(rnorm(n*p),ncol=p)
beta = c(rep (5,s),rep (0,p-s))
Y = X%*%beta + rnorm(n)
# Test set
n = 1e5
Xnew = matrix(rnorm(n*p),ncol=p)
Ynew = Xnew%*%beta + rnorm(n)
```


Simulation 3

```
#######
# OL.S #
#######
require(AER)
fit.ols = lm(Y ~ X-1)
coeftest(fit.ols)[1:10,]
\begin{tabular}{lrrrr} 
\#\# & Estimate & Std. Error & t value & Pr \((>|t|)\) \\
\#\# X1 & 5.5742095 & 0.6359381 & 8.7653334 & 0.07231661 \\
\#\# X2 & 5.1908292 & 1.4299454 & 3.6300891 & 0.17112853 \\
\#\# X3 & 4.3040108 & 0.7556606 & 5.6956934 & 0.11064444 \\
\#\# X4 & 5.8280063 & 0.6142997 & 9.4872367 & 0.06685590 \\
\#\# X5 & 4.4215566 & 0.4772229 & 9.2651804 & 0.06844604 \\
\#\# X6 & 0.3826747 & 1.1566349 & 0.3308518 & 0.79659012 \\
\#\# X7 & 0.6595970 & 1.3420518 & 0.4914840 & 0.70918467 \\
\#\# X8 & -0.3680858 & 1.2459579 & -0.2954239 & 0.81712886 \\
\#\# X9 & -0.2908295 & 1.3123265 & -0.2216137 & 0.86116025 \\
\#\# X10 & -1.6538125 & 2.5926638 & -0.6378816 & 0.63852163
\end{tabular}
```


Simulation 3

```
# number of non-zero coefficients
sum(fit.ols$coefficients!=0)
## [1] 99
# number of statistically significant coefficients:
pv.ols = summary(fit.ols)$coefficients[,4]
sum(pv.ols<.05)
## [1] 0
# test err
pred.ols = predict(fit.ols,data.frame(X=Xnew))
mean((Ynew-pred.ols)^2)
## [1] 229.3538
```


Simulation 3

```
#########
# Lasso #
#########
require(glmnet)
cv.lasso = cv.glmnet(X,Y,intercept=FALSE,alpha=1)
lambda.star = cv.lasso$lambda.min
fit.lasso = glmnet(X,Y,intercept=FALSE,alpha=1,lambda=lambda.star)
# number of non-zero estimated coefficients:
sum(fit.lasso$beta!=0)
## [1] 17
# test err
pred.lasso = predict(fit.lasso,Xnew)
mean((Ynew-pred.lasso)~2)
## [1] 1.436501
```


Simulation 3

```
source('lassosummary.R')
lassosummary(fit.lasso)
## beta
## V1 4.82447042
## V2 4.79685190
## V3 4.54908246
## V4 4.70615289
## V5 4.86261024
## V18 -0.08003794
## V23 0.01706472
## V37 0.01611246
## V39 0.01705680
## V40 0.08449569
## V45 0.04380224
## V77 0.02807225
## V90 -0.10516791
## V94 -0.01021298
## V96 0.04094897
## V97 -0.04232704
## V99 -0.15482818
```


Simulation 3

```
lasso.all = glmnet(X,Y,intercept=FALSE,alpha=1)
plot(lasso.all,xvar="lambda")
```


(C) Jiaming Mao

Simulation 3

```
#################
# Relaxed Lasso #
#################
require(relaxo)
fit.relaxo = cvrelaxo(X,Y)
# estimated coefficients
fit.relaxo$beta[1:5]
## [1] 4.969345 4.963355 4.754283 4.865056 5.000046
sum(fit.relaxo$beta!=0)
## [1] 5
# test err
pred.relaxo = predict(fit.relaxo,Xnew)
mean((Ynew-pred.relaxo)~2)
## [1] 1.080831
```


Post-Selection Inference

- To conduct statistical inference for procedures that involve model selection, such as forward stepwise regression or the lasso, it is tempting to look only at the final selected model ${ }^{10}$. However, such inference is generally invalid.
- The problem is essentially the same as those of specification search and data-snooping: an observed correlation of 0.9 between x and y may be noteworthy. However, if x is found by searching over 100 variables looking for the one with the highest observed correlation with y, then the finding is no longer as impressive and could well be due to chance.
- If not taken into account, the effects of selection can greatly exaggerate the apparent strengths of relationships.

[^4]
Post-Selection Inference

The problem of assessing the strength of the evidence after searching through a large number of models to find the best one is called post-selection inference ${ }^{11}$.

$$
\begin{array}{l|l}
\begin{array}{l}
\text { Inference the old way } \\
\text { (pre-1980?) : } \\
\text { 1. Devise a model }
\end{array} & \text { Inference the new way: } \\
\text { 2. Collect data } & \text { 1. Collect data } \\
\text { 3. Test hypotheses } & \text { 2. Select a model } \\
\text { Classical inference } & \text { 3. Test hypotheses } \\
\text { Post-selection inference }
\end{array}
$$

Source: Tibshirani (2015)

[^5]
Post-Selection Inference

One way to conduct post-selection inference is to make the inference conditional on the model selected ${ }^{12}$.

Consider the following variable selection problem: we are interested in the linear relationship between a p-dimensional x and a target y. Using a selection algorithm, we arrive at the following model:

$$
\begin{equation*}
y=x_{M}^{\prime} \beta_{M}+e \tag{13}
\end{equation*}
$$

, where $M \subset\{1, \ldots, p\}$ indexes the subset of selected x variables.

[^6]
Post-Selection Inference

Let β_{M}^{*} be the population coefficients of $(13)^{13}$. How do we construct a confidence interval for $\beta_{M, j}^{*}, j \in M^{14}$?

Classic Cl : construct $\mathbb{C}_{M, j}$ such that

$$
\begin{equation*}
\operatorname{Pr}\left(\beta_{M, j}^{*} \in \mathbb{C}_{M, j}\right) \geq 1-\alpha \tag{14}
\end{equation*}
$$

${ }^{13}$ i.e.,

$$
\beta_{M}^{*}=\underset{\beta_{M}}{\arg \min } E\left[\left(y-x_{M}^{\prime} \beta_{M}\right)^{2}\right]
$$

${ }^{14} \beta_{M, j}^{*}$ is the population coefficient for $x_{M, j}$, which (1) is the $j^{\text {th }}$ dimension of x; (2) belongs to the subset M. Note that the value of $\beta_{M, j}^{*}$ depends on what other variables are included in M.

Post-Selection Inference

Problem: here we do not start with model M. Instead, we start with $y=x^{\prime} \beta+e$ and use a selection algorithm to find the optimal subset M. However, for every independent random sample $\mathcal{D}=\{x, y\}$ drawn from the underlying population, we may end up with a different selected model $M_{\mathcal{D}} . \beta_{M, j}^{*}$ is undefined when $M_{\mathcal{D}} \neq M$.

Solution: construct CI for $\beta_{M, j}^{*}$ conditional on M being selected:

$$
\operatorname{Pr}\left(\beta_{M, j}^{*} \in \mathbb{C}_{M, j} \mid M \text { is selected }\right) \geq 1-\alpha
$$

Such an approach is called conditional coverage ${ }^{15}$.
${ }^{15}$ Another approach is to assume the existence of a true model:

$$
y=x^{\prime} \beta_{0}+e
$$

, in which β_{0} is sparse, and construct confidence intervals for β_{0} when lasso-type estimators are applied. Such an approach requires assumptions about the correctness of the linear model and the sparsity of β_{0}.

Post-Selection Inference

Original data

With 100 noise variables added

Figure 1: South African Heart disease data. P-values from naive and selectionadjusted approaches, for original data (left) and data with 100 additional noise predictors (right). Each model was chosen by lasso-penalized logistic regression, choosing the tuning parameter by cross-validation.

Taylor \& Tibshirani (2017)

Simulation 3

```
##########################################
# Post-selection inference for the lasso #
##########################################
# here we use a post-selection inference method
# for lasso-type estimators based on conditional coverage.
# See Tibshirani et al. (2016)
require(selectiveInference)
lassoInf = fixedLassoInf(X,Y,intercept=FALSE,
                                    beta=fit.lasso$beta,
                                    lambda=fit.lasso$lambda)
pv.lasso = lassoInf$pv
# compare with the naive method of
# running OLS on variables selected by the lasso
chosen.var = X[,which(fit.lasso$beta!=0)]
fit.olslasso = lm(Y ~ chosen.var-1)
pv.naive = summary(fit.olslasso)$coefficients[,4]
```


Simulation 3

```
coeftest(fit.olslasso)
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
\begin{tabular}{|c|c|c|c|c|}
\hline chosen.var1 & 4.964291 & 0.100367 & 49.4613 & < \(2.2 \mathrm{e}-16\) \\
\hline chosen.var2 & 4.926740 & 0.091933 & 53.5907 & < \(2.2 \mathrm{e}-16\) \\
\hline \#\# chosen.var3 & 4.744114 & 0.101547 & 46.7185 & < \(2.2 \mathrm{e}-16\) \\
\hline \# chosen.var4 & 4.847510 & 0.096313 & 50.3308 & < \(2.2 \mathrm{e}-16\) \\
\hline \#\# chosen.var5 & 4.926776 & 0.093042 & 52.9519 & \(2.2 \mathrm{e}-16\) \\
\hline \# chosen.var6 & -0.223603 & 0.089858 & 88 & 48 \\
\hline
\end{tabular}
## chosen.var6 -0.223603 0.089858 -2.4884 0.014831 *
## chosen.var7 0.060767 0.098379 0.6177 0.538474
## chosen.var8 0.058576 0.090871 0.6446 0.520963
## chosen.var9 0.130765 0.099661 1.3121 0.193103
## chosen.var10 0.203057 0.096866 2.0963 0.039105 *
## chosen.var11 0.122677 0.088432 1.3873 0.169077
## chosen.var12 0.139490 0.089428 1.5598 0.122612
## chosen.var13 -0.199773 0.094191 -2.1209 0.036911 *
## chosen.var14 -0.117156 0.088313 -1.3266 0.188281
## chosen.var15 0.164892 0.096683 1.7055 0.091843 .
## chosen.var16 -0.117979 0.088426 -1.3342 0.185786
## chosen.var17 -0.258159 0.097588 -2.6454 0.009758 **
## ---

\section*{Simulation 3}
```

lassoInf

fixedLassoInf(x = X, y = Y, beta = fit.lasso$beta, lambda = fit.lasso$lambda,

intercept = FALSE)

Standard deviation of noise (specified or estimated) sigma = 10.217

Testing results at lambda = 0.139, with alpha = 0.100

Var Coef Z-score P-value LowConfPt UpConfPt LowTailArea UpTailArea

\#\#	1	4.964	4.157	0.018	1.401	12.830	0.049	0.05
\#\#	2	4.927	4.504	0.000	3.315	13.136	0.049	0.05
\#\#	3	4.744	3.927	0.009	2.182	17.443	0.050	0.05
\#\#	4	4.848	4.230	0.044	0.222	11.423	0.050	0.05
\#\#	5	4.927	4.450	0.108	-1.999	12.436	0.050	0.05
\#\#	18	-0.224	-0.209	0.740	-4.113	15.239	0.050	0.05
\#\#	23	0.061	0.052	0.826	-68.087	9.614	0.050	0.05
\#\#	37	0.059	0.054	0.813	-60.133	9.719	0.050	0.05
\#\#	39	0.131	0.110	0.901	-32.436	1.198	0.050	0.05
\#\#	40	0.203	0.176	0.722	-19.556	6.150	0.050	0.05
\#\#	45	0.123	0.117	0.870	-27.107	2.008	0.050	0.05
\#\#	77	0.139	0.131	0.845	-24.394	2.573	0.050	$0.95 \operatorname{ming}$ Mao
\#\#	90	-0.200	-0.178	0.709	-6.415	18.764	0.050	0.05

```

\section*{Simulation 3}

(C) Jiaming Mao

\section*{Shrinkage as Continuous Model Selection}
- Consider a series of polynomial models: \(\mathcal{H}_{0} \subset \mathcal{H}_{1} \subset \mathcal{H}_{2} \subset \cdots\), where \(\mathcal{H}_{q}=\left\{h(x)=\beta_{0}+\beta_{1} x+\cdots \beta_{q} x_{q}^{q}\right\}\), then estimating, say \(\mathcal{H}_{2}\), is equivalent to estimating, say \(\mathcal{H}_{10}\), with the constraint that \(\beta_{3}=\cdots=\beta_{10}=0^{16}\).
- Instead of imposing such "hard constraints", shrinkage methods impose "soft constraints" by giving \(\beta\) a "budget" (e.g., \(\|\beta\|_{2}^{2} \leq C\) or \(\|\beta\|_{1} \leq C\) ) that have the effect of shrinking \(\beta\) toward 0 .
- In this sense, shrinkage can be thought of as selecting the final hypothesis from a continuous set of models rather than a discrete one (constant, linear, quadratic ...).

\footnotetext{
\({ }^{16}\) Technically, this is only true if the polynomials are expressed as linear combinations of Legendre polynomials in \(x\) rather than consecutive powers of \(x\).
}

\section*{Regularization}
- Shrinkage is a form of regularization: methods that constrain the complexity of a model in order to avoid overfitting and improve out-of-sample error.
- In least squares regression, given a model \(\mathcal{H}\), we choose \(g \in \mathcal{H}\) to minimize the in-sample error \(E_{i n}\). This is called empirical risk minimization (ERM).
- Regularization methods choose \(g\) by solving the following problem:
\[
\begin{align*}
& \min _{h \in \mathcal{H}} E_{i n}(h)  \tag{15}\\
& \text { subject to } \Omega(h) \leq C
\end{align*}
\]
, where \(\Omega(h)\) is a measure of the complexity of \(h\) and is called a regularizer \({ }^{17}\).

\footnotetext{
\({ }^{17}\) When \(\mathcal{H}\) is parametrized by \(\beta, \Omega(h)\) can be written as \(\Omega(\beta)\).
}

\section*{Regularization}
- Equivalently, (15) can be written as
\[
\begin{align*}
& \min _{h \in \mathcal{H}}\left\{E_{\text {in }}(h)+\lambda \Omega(h)\right\}  \tag{16}\\
= & \min _{h \in \mathcal{H}} E_{\text {aug }}(h)
\end{align*}
\]
, where we define augmented error \(E_{\text {aug }}(h) \equiv E_{\text {in }}(h)+\lambda \Omega(h)\).
- (15) is called the Ivanov form and expresses regularization as constrained ERM.
- (16) is called the Tikhonov form and expresses regularization as penalized ERM.

\section*{Regularization}

\section*{Regularization as Constrained ERM}

free fit

restrained fit

\section*{Regularization}

\section*{Regularization as Constrained ERM}

Minimizing \(E_{\text {in }}(\beta)+\lambda\|\beta\|_{2}^{2}\) for different \(\lambda s\)

\[
\lambda=0.0001
\]
\[
\lambda=0.01
\]
\[
\lambda=1
\]



overfitting \(\qquad\) \(\longrightarrow\)
\(\longrightarrow\)
\(\longrightarrow\)
underfitting

\section*{Regularization}

\section*{Bias-Variance Decomposition}
\[
f:[-1,1] \rightarrow \mathbb{R} \quad f(x)=\sin (\pi x)
\]

Only two training examples! \(\quad N=2\)

Two models used for learning:
\[
\begin{array}{ll}
\mathcal{H}_{0}: & h(x)=b \\
\mathcal{H}_{1}: & h(x)=a x+b
\end{array}
\]

Which is better, \(\mathcal{H}_{0}\) or \(\mathcal{H}_{1}\) ?


\section*{Regularization}

\section*{Bias-Variance Decomposition}

bias \(=\mathbf{0 . 5 0} \quad\) var \(=\mathbf{0 . 2 5}\)
\(\mathcal{H}_{1}\)

bias \(=\mathbf{0 . 2 1}\)
var \(=1.69\)

\section*{Regularization}

Bias-Variance Decomposition

without regularization

(C) Jiaming Mao

\section*{Regularization}

\section*{Bias-Variance Decomposition}
without regularization

with regularization

bias \(=0.23\)
var \(=\mathbf{0 . 3 3}\)

\section*{Regularization}
\(E_{\text {aug }}\) is a better proxy for \(E_{\text {out }}\) than \(E_{i n}\).

VC generalization bound:
\[
E_{\text {out }}(h) \leq E_{\text {in }}(h)+\mathcal{O}\left(\sqrt{d_{V C}(\mathcal{H}) \frac{\ln N}{N}}\right)
\]

Augmented error:
\[
E_{\text {aug }}(h)=E_{i n}(h)+\lambda \Omega(h)
\]

\section*{Choosing a Regularizer}



Simulated data set with the target function being a \(15^{\text {th }}\) degree polynomial.
Left: \(\Omega(\beta)=\sum_{j=0}^{15} \beta_{j}^{2}\); Right: \(\Omega(\beta)=\sum_{j=0}^{15} j \beta_{j}^{2}\)

\section*{Choosing a Regularizer}
\(L_{0}\) regularizer:
\(\Omega(\beta)=\|\beta\|_{0}=\sum_{j} \mathcal{I}\left\{\beta_{j} \neq 0\right\}\)
\(L_{1}\) regularizer:
\(\Omega(\beta)=\|\beta\|_{1}=\sum_{j}\left|\beta_{j}\right|\)
\(L_{2}\) regularizer:
\(\Omega(\beta)=\|\beta\|_{2}^{2}=\sum_{j} \beta_{j}^{2}\)
\(\Omega(\beta)=\|\beta\|_{q}^{q}=\sum_{j}\left|\beta_{j}\right|^{q}\)
\[
q=4
\]
\[
q=2
\]

\(q=0.5\)
\(q=0.1\)




Contours of constant value of \(L_{q}\) regularizer for different values of \(q\)

\section*{Elastic Net}

In the presence of highly correlated features, the results of the lasso can be arbitrary and unstable.
- Target function: \(y=f(x)=4 x_{1}\); Model: \(h(x)=w_{1} x_{1}+w_{2} x_{2}\)
- Suppose \(x_{1}=x_{2}\), then any \(h(x)\) with \(w_{1}+w_{2}=4\) minimizes \(E_{i n}\), but different regularizers penalize them differently:
\begin{tabular}{cccc}
\hline\(w_{1}\) & \(w_{2}\) & \(\|w\|_{1}\) & \(\|w\|_{2}^{2}\) \\
\hline \hline 4 & 0 & 4 & 16 \\
\hline 2 & 2 & 4 & 8 \\
\hline 1 & 3 & 4 & 10 \\
\hline-1 & 5 & 6 & 26 \\
\hline
\end{tabular}
- \(\|w\|_{1}\) does not discriminate (as long as all have same sign)
- \(\|w\|_{2}^{2}\) minimized when \(w\) is spread equally

\section*{Elastic Net}

\section*{Correlated Features (cont.)}


\section*{Elastic Net}

\section*{Correlated Features (cont.)}


\section*{Elastic Net}

The elastic net combines the lasso and ridge penalties:
\[
\Omega(\beta)=\alpha\|\beta\|_{1}+(1-\alpha)\|\beta\|_{2}^{2}
\]

- The elastic net shrinks together the coefficients of correlated features like ridge regression, while encouraging sparse solutions like the lasso.

\section*{Elastic Net}

Simulation:
\[
\begin{aligned}
z_{1}, z_{2}, \epsilon_{1}, \ldots, \epsilon_{6}, e & \sim^{\text {i.i.d. }} \mathcal{N}(0,1) \\
y & =3 z_{1}-1.5 z_{2}+2 e \\
x_{j} & = \begin{cases}z_{1}+0.2 \epsilon_{j} & j=1,2,3 \\
z_{2}+0.2 \epsilon_{j} & j=4,5,6\end{cases}
\end{aligned}
\]

\section*{Elastic Net}
```


generate data

require(MASS)
require(glmnet)
n <- }10
z1 <- rnorm(n)
z2 <- rnorm(n)
e <- mvrnorm(n,mu=rep(0,6),Sigma=diag(6))
x1 <- z1 + e[,1:3]/5
x2 <- z2 + e[,4:6]/5
x <- cbind(x1,x2)
y<- 3*z1 - 1.5*z2 + 2*rnorm(n)

lasso

lassofit <- glmnet(x,y,alpha=1)

elastic net

enetfit <- glmnet(x,y,alpha=0.3) \# 30% L1 and 70 %L2

```

\section*{Elastic Net}


Elastic-Net Paths


\section*{Bayesian Interpretation of Regularization}

The lasso and ridge regression estimates correspond to the maximum a posteriori (MAP) estimates with Laplace and Gaussian priors \({ }^{18}\).
- Ridge regression is the posterior mode \({ }^{19}\) for \(\beta\) under a normal prior with mean zero.
- The lasso is the posterior mode for \(\beta\) under a double-exponential (Laplace) prior with mean zero.
- The standard deviation of the prior distribution corresponds to regularization strength \((\lambda)\).

\footnotetext{
\({ }^{18}\) See Appendix I for a simple derivation
\({ }^{19}\) as well as the posterior mean
}

\section*{Bayesian Interpretation of Regularization}

The maximum à posteriori (MAP) estimate is defined as
\[
\begin{aligned}
\hat{\theta}_{M A P} & =\arg \max _{\theta} p(\theta \mid \mathcal{D}) \\
& =\arg \max _{\theta} p(\mathcal{D} \mid \theta) p(\theta)
\end{aligned}
\]
, i.e., \(\widehat{\theta}_{M A P}\) is the mode of the posterior distribution of \(\theta\).
- Given a uniform prior \(p(\theta)=\) constant, \(\widehat{\theta}_{M A P}=\widehat{\theta}_{M L E}{ }^{20}\).
\({ }^{20}\) In this case, the Bayesian estimate equals the frequentist estimate because the prior is uninformative (hence uniform priors are sometimes called uninformative priors). As a result, \(\mathcal{D}\) becomes the only source of our knowledge for \(\theta\), as in the frequentist approach. If \(p(\theta)=\) constant over the entire real line, then it is also an improper prior, since it does not integrate to one.

\section*{Bayesian Interpretation of Regularization}


The Bayesian Way

\section*{Bayesian Interpretation of Regularization}


Left: Gaussian prior for Ridge; Right: Laplace prior for the Lasso

\section*{Bayesian Interpretation of Regularization}
- From a Bayesian perspective, regularization amounts to the use of informative priors, where we introduce our knowledge or belief about the target function in the form of priors, and use them to "regulate" the behavior of the hypothesis we choose \({ }^{21}\).

\footnotetext{
\({ }^{21}\) Recall that in choosing a model, our choice should be based both on our belief about the true target function and on the amount of data we have (matching model complexity to data sources). Similarly, the choice of regularizers is based both on our belief about the target function (such as its smoothness), and the necessity of tempering down the variability in our estimates when \(p\) is large relative to \(N\).
}

\section*{Smoothing Splines}

A smoothing spline is a function \(g(x)\) that solves the following problem:
\[
\begin{equation*}
\min _{h}\left\{\sum_{i=1}^{N}\left(y_{i}-h\left(x_{i}\right)\right)^{2}+\lambda \int\left[h^{\prime \prime}(t)\right]^{2} d t\right\} \tag{17}
\end{equation*}
\]
, where \(\lambda \geq 0\) is a tuning parameter.
- The regularizer \(\Omega(h)=\int\left[h^{\prime \prime}(t)\right]^{2} d t\) is a roughness penalty. Hence \(\lambda\) regulates the smoothness of the spline.
- \(\lambda=0: g(x)\) interpolates every \(\left(x_{i}, y_{i}\right)\).
- \(\lambda \rightarrow \infty: g(x)\) becomes the linear least squares line.

\section*{Smoothing Splines}

The solution to (17) is a natural cubic spline with knots at every \(x_{i}{ }^{22,23,24}\). Recall that the least squares solution for natural cubic splines is \(\widehat{\beta}^{L S}=\left(\Phi^{\prime} \Phi\right)^{-1} \Phi^{\prime} Y\), where \(\Phi(x)\) is the set of basis functions for natural cubic splines. Solving (17) gives the shrinkage solution:
\[
\widehat{\beta}=\left(\Phi^{\prime} \Phi+\lambda \Psi\right)^{-1} \Phi^{\prime} Y
\]
, where \(\Psi\) is an \(N \times N\) matrix with \(\Psi_{i j}=\int \Phi_{i}^{\prime \prime}(t) \Phi_{j}^{\prime \prime}(t) d t\).

\footnotetext{
\({ }^{22}\) Hence, we no longer have to choose knot placement!
\({ }^{23}\) See Appendix II for proof.
\({ }^{24}\) More generally, penalizing the squared \(k^{\text {th }}\) derivative leads to a natural spline of degree \(2 k-1\).
}

\section*{Wage Profile}
```

fit = smooth.spline(Wage$age,Wage$wage)

```


\section*{Appendix I: Gaussian Prior and L2 Regularization}

Consider a normal linear model with Gaussian prior \({ }^{25}\) :
\[
\begin{aligned}
\beta_{j} & \sim \mathcal{N}\left(0, \tau^{2}\right), j=0, \ldots, p \\
y & \sim \mathcal{N}\left(\beta^{\prime} x, \sigma^{2}\right)
\end{aligned}
\]

Then we have:
\[
\begin{equation*}
\widehat{\theta}_{M A P}=\arg \max _{\beta}\left\{\left(\prod_{i=1}^{N} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{\left(y_{i}-\beta^{\prime} x_{i}\right)^{2}}{2 \sigma^{2}}}\right)\left(\prod_{j=1}^{p} \frac{1}{\tau \sqrt{2 \pi}} e^{-\frac{\beta_{j}^{2}}{2 \tau^{2}}}\right)\right\} \tag{18}
\end{equation*}
\]
\({ }^{25}\) Assume we know \(\sigma\).

\section*{Appendix I: Gaussian Prior and L2 Regularization}
\((18) \Rightarrow\)
\[
\begin{aligned}
\widehat{\theta}_{M A P} & =\arg \max _{\beta}\left\{\log \left(\prod_{i=1}^{N} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{\left(y_{i}-\beta^{\prime} x_{i}\right)^{2}}{2 \sigma^{2}}}\right)+\log \left(\prod_{j=1}^{p} \frac{1}{\tau \sqrt{2 \pi}} e^{-\frac{\beta_{j}^{2}}{2 \tau^{2}}}\right)\right\} \\
& =\arg \max _{\beta}\left\{-\sum_{i=1}^{N} \frac{\left(y_{i}-\beta^{\prime} x_{i}\right)^{2}}{2 \sigma^{2}}-\sum_{j=0}^{p} \frac{\beta_{j}^{2}}{2 \tau^{2}}\right\} \\
& =\arg \min _{\beta}\left\{\sum_{i=1}^{N}\left(y_{i}-\beta^{\prime} x_{i}\right)^{2}+\lambda \sum_{j=0}^{p} \beta_{j}^{2}\right\}
\end{aligned}
\]
, where \(\lambda=\frac{\sigma^{2}}{\tau^{2}} 26\).
\({ }^{26}\) Hence smaller values of \(\tau\) correspond to stronger regularization

\section*{Appendix I: Laplace Prior and L1 Regularization}

Consider a normal linear model with Laplace prior \({ }^{27}\) :
\[
\begin{aligned}
\beta_{j} & \sim \text { Laplace }(\mu, b), j=0, \ldots, p \\
y & \sim \mathcal{N}\left(\beta^{\prime} x, \sigma^{2}\right)
\end{aligned}
\]

Then we have:
\[
\begin{aligned}
\widehat{\theta}_{M A P} & =\arg \max _{\beta}\left\{\left(\prod_{i=1}^{N} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{\left(y_{i}-\beta^{\prime} x_{i}\right)^{2}}{2 \sigma^{2}}}\right)\left(\prod_{j=1}^{p} \frac{1}{2 b} e^{-\frac{\left|\beta_{j}\right|}{2 b}}\right)\right\} \\
& =\arg \min _{\beta}\left\{\sum_{i=1}^{N}\left(y_{i}-\beta^{\prime} x_{i}\right)^{2}+\lambda \sum_{j=0}^{p}\left|\beta_{j}\right|\right\}
\end{aligned}
\]
, where \(\lambda=\frac{\sigma^{2}}{b} 28\).
\({ }^{27}\) Assume we know \(\sigma\).
\({ }^{28}\) Smaller values of \(b\) correspond to stronger regularization

\section*{Appendix II: Smoothing Splines}

\section*{Theorem}

Let \(h\) be any differentiable function on \([a, b]\) for which \(h\left(x_{i}\right)=z_{i}\) for \(i=1, \ldots, n\). Suppose \(n>2\), and that \(g\) is the natural cubic spline interpolant to the values \(z_{1}, \ldots, z_{n}\) at points \(x_{1}, \ldots, x_{n}\) with \(a<x_{1}<\cdots<x_{n}<b\). Then \(\int\left(h^{\prime \prime}\right)^{2} \geq \int\left(g^{\prime \prime}\right)^{2}\) with equality if and only if \(h=g\).

\section*{Appendix II: Smoothing Splines}

\section*{Proof.}

Let \(\ell=h-g\). So \(\ell\left(x_{i}\right)=0\) for \(i=1, \ldots, n\).
\[
\begin{equation*}
\int\left(h^{\prime \prime}\right)^{2}=\int\left(g^{\prime \prime}+\ell^{\prime \prime}\right)^{2}=\int\left(g^{\prime \prime}\right)^{2}+2 \int g^{\prime \prime} \ell^{\prime \prime}+\int\left(\ell^{\prime \prime}\right)^{2} \tag{19}
\end{equation*}
\]

Since
\[
\begin{aligned}
& \begin{aligned}
\int_{a}^{b} g^{\prime \prime}(x) \ell^{\prime \prime}(x) d x & =\left.g^{\prime \prime}(x) \ell^{\prime}(x)\right|_{a} ^{b}-\int_{a}^{b} \ell^{\prime}(x) g^{(3)}(x) d x \\
& =-\sum_{i=1}^{n-1} g^{(3)}\left(x_{j}^{+}\right) \int_{x_{j}}^{x_{j+1}} \ell^{\prime}(x) d x \\
& =-\sum_{i=1}^{n-1} g^{(3)}\left(x_{j}^{+}\right)\left(\ell\left(x_{j+1}\right)-\ell\left(x_{j}\right)\right)=0
\end{aligned} \\
& ,(19) \Rightarrow \int\left(h^{\prime \prime}\right)^{2} \geq \int\left(g^{\prime \prime}\right)^{2} .
\end{aligned}
\]

\section*{Acknowledgement I}

Part of this lecture is based on the following sources:
- Abu-Mostafa, Y. S., M. Magdon-Ismail, and H. Lin. 2012. Learning from Data. AMLBook.
- Blei, D. M. Interacting with data. Lecture at Princeton University, retrieved on 2017.01.01. [link]
- Dave, R. Advanced Scientific Computing, Lecture at Harvard Institute for Applied Computational Science, retrieved on 2019.01.01. [link]
- Hastie, T., R. Tibshirani, and J. Friedmand. 2008. The Elements of Statistical Learning (2 \({ }^{\text {nd }}\) ed.). Springer.
- James, G., D. Witten, T. Hastie, and R. Tibshirani. 2013. An Introduction to Statistical Learning: with Applications in R. Springer.

\section*{Acknowledgement II}
- Liang, F. Statistical Learning: Nonparametric and Regularization Approaches, Lecture at Duke University, retrieved on 2019.01.01. [link]
- Rosenberg, D. S. Machine Learning and Computational Statistics, Lecture at NYU Center for Data Science, retrieved on 2019.01.01. [link]
- Tibshirani, R. Data Mining, Lecture at Carnegie Mellon University, retrieved on 2017.01.01. [link]

\section*{Reference}

國 Belloni，A．and V．Chernozhukov．2013．＂Least squares after model selection in high－dimensional sparse models，＂Bernoulli，19（2）．

Efron B．，T．Hastie，I．Johnstone，and R．Tibshirani．2004．＂Least Angle Regression，＂The Annals of Statistics，32（2）．

國 Lee，J．D．，D．L．Sun，Y．Sun，and J．Taylor．2016．＂Exact Post－selection Inference with Application to the Lasso，＂The Annals of Statistics，44（3）．

R Meinshausen，N．2007．＂Relaxed Lasso，＂Computational Statistics \＆Data Analysis， 52（1）．

R Taylor，J．and R．Tibshirani．2017．＂Post－selection inference for \(\ell_{1}\)－penalized likelihood models，＂The Canadian Journal of Statistics，46（1）．

R Tibshirani，R．2015．＂Recent Advances in Post－Selection Statistical Inference，＂ Breiman lecture，NIPS 2015.

國 Tibshirani，R．J．，J．Taylor，R．Lockhart，and R．Tibshirani．2016．＂Exact Post－Selection Inference for Sequential Regression Procedures，＂Journal of the American Statistical Association，111（514）．```


[^0]:    ${ }^{1}$ which corresponds to the training set in model assessment, since once we have picked a model - here $\mathcal{H}_{*}$ - what is left to do is model assessment.

[^1]:    ${ }^{2}$ Note that $g^{(-k)}(\mathcal{H})$ can be different for different $k$, hence the cross-validation error is obtained by averaging over the performance of different hypotheses.

[^2]:    ${ }^{4} \widehat{\beta}^{L S}$ denotes the least square estimate.
    ${ }^{5} \widehat{\beta}_{0}$ is not shrunk toward 0 .

[^3]:    ${ }^{9}$ The idea originates from Efron et al. (2004), in which the authors propose running least angle regression (LARS, which incorporates the lasso) in the first stage and OLS in the second stage, a procedure that they call the LARS-OLS hybrid. Meinshausen (2007) proposes the two-stage procedure outlined above, which the author calls relaxed Lasso (Meinshausen discusses using OLS in the second stage as a special case of the relaxed lasso). Belloni and Chernozhukov (2013) propose the same two-stage procedure as Meinshausen (2007) but with OLS (rather than a lasso that incorporates the OLS) as the second stage, which they call the post-Lasso OLS.

[^4]:    ${ }^{10}$ For example, one may obtain $p$-values for the coefficients of interest by using OLS to refit the model selected by the lasso.

[^5]:    ${ }^{11}$ or, selective inference.

[^6]:    ${ }^{12}$ We have already discussed an approach designed to account for selection due to multiple-testing: the Bonferroni correction, which bounds the family-wise error rate.

