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“All models are wrong but some are useful.” – George Box

“The existence of a problem in knowledge depends on the future
being different from the past, while the possibility of a solution of
the problem depends on the future being like the past.” – Frank
Knight
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The Learning Problem

Given variables x and y , suppose we are interested in predicting the
value of y based on the value of x .

I x : feature; input; predictor; independent variable
I y : target; output; response; dependent variable

For simplicity, assume there exists a function f such that y = f (x)1.
f is the target function that we want to learn: to predict the value
of y is to learn f 2.

1i.e., given x , y is completely determined.
2In the statistics and econometrics literature, learning is called estimation. In this

lecture, we use the two terms interchangeably.
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The Learning Problem

Let the observed data be D = {(x1, y1) , . . . , (xN , yN)}.

Start with a set of candidate hypotheses which you think are likely
to represent f :

H = {h1, h2, . . .}

is called a hypothesis set or a model3.

Based on D, use an algorithm to select a hypothesis g from H. Goal:
g ≈ f .

3Let θ ∈ Θ be a set of parameters. If h1, h2, . . . are functions of θ, such that
h1 = h (θ1) , h2 = h (θ2) , . . ., then we say H = {h1, h2, . . .} is parametrized by θ and
can be written as H = {h (θ) : θ ∈ Θ}.
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The Learning Problem
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Is Learning Feasible?

bin with red and green marbles.

pick a sample of N marbles
independently.

µ : probability of picking a red
marble

ν : fraction of red marbles in the
sample

Can we say anything about µ after observing ν?
I No, sample can be mostly green while bin is mostly red.
I Yes, sample frequency ν is likely close to bin frequency µ.
I possible vs. probable
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Probability to the Rescue

Hoeffding’s Inequality
Let z1, . . . , zN be N independent Bernoulli random variables with
Pr (zi = 1) = µ and Pr (zi = 0) = 1− µ. Let ν = 1

N
∑N

i=1 zi . Then for any
ε > 0a,b,

Pr (|ν − µ| > ε) ≤ 2e−2ε2N

aNote that ν is random, but observed. µ is fixed, but unobserved.
be.g., draw a sample of N = 1000 and observe ν. Then,

Pr (|ν − µ| > 0.05) ≤ 0.014
Pr (|ν − µ| > 0.10) ≤ 0.000000004

As we will see, learning is feasible in a probabilistic sense.
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Connection to Learning

In learning, the unknown is an entire function f

© Jiaming Mao



Connection to Learning

© Jiaming Mao



Connection to Learning

© Jiaming Mao



Connection to Learning

© Jiaming Mao



Connection to Learning

According to Hoeffding’s inequality,

Pr (|Ein (h)− Eout (h)| > ε) ≤ 2e−2ε2N (1)

– Ein : in-sample error; training error; empirical error; empirical risk
– Eout : out-of-sample error; expected error; prediction error; risk

(1) says that for a given h, given large enough N,

Ein ≈ Eout .

If Ein ≈ 0, then Eout ≈ 0. In this case we have learned something
about f : f ≈ h over X .
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Connection to Learning

The key assumptions that are needed for (1) to hold are:

1 The data set D is a random sample, i.e. data points are drawn i .i .d .
from the underlying distribution.

I In order to say something about unobserved data, we need to assume
that they resemble the observed data.

I Assumptions on the data generating process (here: drawn i .i .d .) is
always necessary if we want to say anything beyond our observed data.

2 h is fixed (before D is generated).

If the assumptions are satisfied, then (1) says that a sample D can be used
to assess whether or not h is close to f .

However, this is verification, not learning.
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Finite Learning Model

If we pick the hypothesis with minimum Ein, will Eout be small?
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Finite Learning Model

If you toss a fair coin 10 times, what is the probability that you will
get 10 heads?

I ≈ 0.1%

If you toss 1000 fair coins 10 times each, what is the probability that
some coin will get 10 heads?

I ≈ 62%
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Finite Learning Model
Let g ∈ H = {h1, . . . , hM}.

Pr (|Ein (g)− Eout (g)| > ε) ≤ Pr {|Ein (h1)− Eout (h1)| > ε

or |Ein (h2)− Eout (h2)| > ε

· · ·
or |Ein (hM)− Eout (hM)| > ε}

≤
M∑

m=1
Pr (|Ein (hm)− Eout (hm)| > ε)

≤ 2|H|e−2ε2N (2)

, where |H| = M is the size of H.
(2) is valid for any g ∈ H, regardless how g is selected.
Note g is not fixed before the data is generated: the selection of g
depends on D.

© Jiaming Mao



Finite Learning Model

Let δ ≡ 2 |H| e−2ε2N . (2) ⇒ with probability at least 1− δ,

Eout (g) ≤ Ein (g) +

√
1
2N ln 2 |H|

δ
(3)

(3) is referred to as a generalization bound.
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The Learning Problem

The feasibility of learning is split into two questions:

1 Can we make sure that Eout (g) is close enough to Ein (g)?
2 Can we make Ein (g) small enough?

|H| can be thought of as a measure of the complexity of H.

Tradeoff:
I Small |H| ⇒ Ein (g) ≈ Eout (g)
I Large |H| ⇒ more likely to find g such that Ein (g) ≈ 0
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Effective Number of Hypotheses

In practice, hypothesis sets are typically infinite in size.

How to derive the generalization bound when H is infinite?

Idea:

On a given data set D, many h ∈ H will look the same, i.e., they map
D into the same set of values.

These hypotheses are identical from the data’s perspective. Therefore
there are “effectively” fewer than |H| hypotheses4.

4Since the data is all we have.
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Effective Number of Hypotheses
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Effective Number of Hypotheses

From the point of view of D, the entire H is just one dichotomy.
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Growth Function

Consider binary target functions and hypothesis sets that contain
h : X → {−1,+1}.

If h ∈ H is applied to a finite sample x1, . . . , xN ∈ X , we get an
N−tuple h (x1) , . . . , h (xN) of ±1’s.

Such an N−tuple is called a dichotomy since it splits x1, . . . , xN into
two groups: those points for which h is −1 and those for which h is
+1.

Each h ∈ H generates a dichotomy on x1, . . . , xN , but two different
h’s may generate the same dichotomy if they happen to give the same
pattern of ±1’s on this particular sample.
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VC Dimension

The growth function for a hypothesis set H, denoted mH (N), is the
maximum possible number of dichotomies H can generate on a data
set of N points5.

If H is capable of generating all possible dichotomies on x1, . . . , xN ,
then H shatters x1, . . . , xN , in which case mH (N) = 2N .

The Vapnik-Chervonenkis (VC) dimension of H, denoted dvc (H),
is the size of the largest data set that H can shatter6.

I dvc (H) is the largest value of N for which mH (N) = 2N .

5rather than over the entire input space X .
6See Appendix I for a detailed introduction to growth function and VC dimension.

© Jiaming Mao



VC Inequality

The Vapnik-Chervonenkis Inequality
Let H be a set of binary-valued hypotheses. For any g ∈ H,

Pr (|Ein (g)− Eout (g)| > ε) ≤ 4mH (2N) e−
1
8 ε

2N (4)
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VC Bound

VC Generalization Bound
(4) ⇒ for any tolerance δ > 0,

Eout (g) ≤ Ein (g) +

√
8
N ln 4mH (2N)

δ
(5)

with probability ≥ 1− δ.
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VC Bound

We can prove that:

mH (N) ≤

Ndvc (H) + 1(
eN

dvc (H)

)dvc (H)
N ≥ dvc (H)

(6)

The VC inequality and VC generalization bound establish the
feasibility of learning with infinite hypothesis sets: with enough data,
each and every hypothesis in an infinite H with a finite VC dimension
will generate well from Ein to Eout .
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VC Bound
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Training versus Testing

If we have an independent test set not used for selecting g from H, and on
which we can evaluate the performance of g , then

Training: Pr (|Ein (g)− Eout (g)| > ε) ≤ 4mH (2N) e−
1
8 ε

2N

Testing: Pr (|Etest (g)− Eout (g)| > ε) ≤ 2e−2ε2N

The generalization bound for test error is much tighter.

The test set is not biased, whereas the training set has an optimistic
bias, since it is used to choose a hypothesis that looks good on it.

The price for a test set is fewer data for training.
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Approximation-Generalization Tradeoff

(5) and (6) ⇒

Eout (g) ≤ Ein (g) +

√
8
N ln 4mH (2N)

δ

≤ Ein (g) +

√√√√ 8
N ln

4
(

(2N)dvc + 1
)

δ︸ ︷︷ ︸
Ω(dvc )

Ω (dvc) can be viewed as a penalty for model complexity.

More complex H (dvc ↑) ⇒ better chance of approximating f in
sample (Ein ≈ 0)
Less complex H (dvc ↓) ⇒ better chance of generalizing out of
sample (Ein ≈ Eout)

© Jiaming Mao



Approximation-Generalization Tradeoff

© Jiaming Mao



Approximation-Generalization Tradeoff

VC analysis shows the choice of H needs to strike a balance between
approximating f on the training data and generalizing to new data.

If H is too simple, we may fail to approximate f well on the training
data and end up with a large in-sample error term.

If H is too complex, we may fail to generalize well because of the
large model complexity term.

© Jiaming Mao



Learning as Optimization

The choice of error measure that quantifies how well a hypothesis h
approximates the target function f matters for the learning process and
can affect the final hypothesis g that is chosen.

Formally,

Eout (h) = E [` (h (x) , f (x))]

Ein (h) = 1
N

N∑
i=1

` (h (xi ) , f (xi ))

, where ` (h (x) , f (x)) is a loss function that measures the difference
between h (x) and f (x)7.

7Hence Eout = expected loss. Ein =average loss on the training data.
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Learning as Optimization

Some commonly used loss functions are:8

` (x , y) = (x − y)2 squared-error loss
` (x , y) = |x − y | absolute-error loss
` (x , y) = I (x 6= y) zero-one loss

We have used zero-one loss in VC analysis when dealing with binary
target functions. For real-valued functions, a common choice is to use
the squared-error loss.

The process of learning is also a process of optimization: we choose g
by minimizing an objective function, which is the error measure based
on our chosen loss function.

8The squared-error loss is also called quadratic loss or L2 loss. The absolute-error
loss is also called linear loss or L1 loss.
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Bias-Variance Decomposition

Bias-variance decomposition provides another way of looking at the
approximation-generalization tradeoff.

Consider a real-valued target function f . Let g ∈ H be the hypothesis
chosen to approximate f . Then

Eout (g) = E
[
(g (x)− f (x))2

]
(7)

= V (g (x)) + E [(g (x)− f (x))]2

= V(g) + [bias(g)]2

, where bias(g) .= E [(g (x)− f (x))].
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Bias-Variance Decomposition

9,10

9Note: the expectation is with respect to both x and D, since g depends on D. I.e.,

bias (g) = Ex [ED [(g (x)− f (x))]] = Ex [ED [g (x)]− f (x)]
= Ex [ḡ (x)− f (x)]

, where ḡ (x) .= ED [g (x)]. Similarly,

V (g) = Ex
[
ED
[
(g (x)− ḡ (x))2]]

10If
y = f (x) + e

, where E [e] = 0, then

Eout (g) = E
[
(y − g (x))2]

= V(g) + [bias(g)]2 + V (e)
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Bias-Variance Decomposition

Intuitively, bias arises if the model H does not contain f 11. Thus
there will be error even if we fit the model on the entire population.

V(g) refers to the amount by which g would change if we estimate it
using a different data set. The variance term arises because we have
limited data. The g that we select based on a limited sample is
almost never the same as the g that we would select if we have access
to the entire population.

I In general, the variance term decreases as sample size increases.

11which is almost always the case: our model hardly ever contains the true f .
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Bias-Variance Decomposition
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Bias-Variance Decomposition

y = f (x) = sin (πx)
Two models:

H0 : h (x) = b
H1 : h (x) = ax + b

2 data points
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Bias-Variance Decomposition
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Bias-Variance Trade-off

In general, as model complexity increases, the bias will decrease and
the variance will increase, leading to the bias-variance trade-off.

I More complex models tend to have higher variance because they have
the capacity to follow the data more closely. Thus using a different set
of data points may cause g to change considerably.

I The challenge lies in finding a model for which both the bias and the
are low.
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Bias-Variance Trade-off

y = f (x) + e
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Bias-Variance Trade-off

y = f (x) + e
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Bias-Variance Trade-off

y = f (x) + e
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Bias-Variance Trade-off
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Bias-Variance Trade-off
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Learning Curve

© Jiaming Mao



Learning Curve
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Noisy Targets

If y is not uniquely determined by x , i.e. if there does not exist a
deterministic function f such that y = f (x), then the relation between x
and y needs to be described by a joint-distribution p (x , y) = p (y |x) p (x).

Three approaches to learning and prediction when y is “noisy”12:

1 Learn p (y |x): in this case we have a target distribution rather than
a target function13.

2 Find a deterministic function f such that y = f (x) + e, where e is an
error term, and let f be our target function.

3 Let p (x , y) be our target distribution, from which we can calculate
p (y |x) = p(x ,y)

p(x) .

12We say y is a noisy target when conditional on x , y is not completely determined.
13In Bayesian terms, p (y |x) is the posterior distribution of y .
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Learning p(y|x)

To learn p (y |x), let the hypothesis set H be a set of conditional
probability distributions: H = {q1 (y |x) , q2 (y |x) , . . .}.

I H is said to be a probabilistic model14.

Goal: select a q (y |x) ∈ H that approximates p (y |x) well.

What is a suitable loss function for quantifying how well q (y |x)
approximates p (y |x)?

I Need: a measure of (dis)similarity between probability distributions.

14In general, hypothesis sets consisting of (conditional) probability distributions are
called probabilistic models.
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KL Divergence

Let p and q be two distributions of x . The Kullback-Leibler (KL)
divergence of q from p15, is defined as

DKL (p||q) =
∑

x
log
(p (x)
q (x)

)
p (x) (8)

, or in the case of continuous random variables,

DKL (p||q) =
∫

log
(p (x)
q (x)

)
p (x) dx (9)

15Also called relative entropy. See Appendix II for an introduction to information
theory, entropy, and KL divergence.
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KL Divergence as Loss Function

KL divergence can be interpreted as a measure of dissimilarity between two
distributions: DKL (p||q) ≥ 0 if and only if p = q16.

DKL (p||q) = Ex∼p(x) [log p (x)− log q (x)]
= −Ex∼p(x) [log q (x)− log p (x)]

≥ − logEx∼p(x)

[q (x)
p (x)

]
= − log

∫ q (x)
p (x)p (x) dx = 0

Therefore, KL divergence can be used as a loss function to quantify the
difference between probability distributions.

16Note that KL divergence is not symmetric: DKL (p||q) 6= DKL (q||p). Therefore it is
not a proper distance measure.
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KL Divergence as Loss Function

Now suppose we are given data D = {x1, . . . , xN} ∼i .i .d . p (x) and want to
learn p (x) based on D.

For any hypothesis distribution q (x), using KL divergence as a loss
function, we have:

Eout (q) = E [log p (x)− log q (x)] (10)

Ein (q) = 1
N

N∑
i=1

(log p (xi )− log q (xi )) (11)

© Jiaming Mao



KL Divergence as Loss Function

Since p is fixed, choosing a q to minimize (10) and (11) is equivalent to
minimizing17:

Eout (q) = −E [log q (x)] (12)

Ein (q) = − 1
N

N∑
i=1

log q (xi ) (13)

cross-entropy loss: ` (q (x) , p (x)) = − log q (x)

17(12) and (13) are the out-of-sample and in-sample expressions for cross entropy.
Given a fixed true distribution p, minimizing the KL divergence of any distribution q
from p is the same as minimizing their cross entropy. See Appendix II .
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Maximum Likelihood

Given observed data D and a probability distribution q, the likelihood
function is defined as the probability of observing D according to q:

L (q) = Pr
q

(D) =
N∏

i=1
q (xi ) (14)

⇒ the log likelihood function

logL (q) =
N∑

i=1
log q (xi ) (15)

Let the hypothesis set H be a set of probability distributions. The
maximum likelihood estimation (MLE) method chooses a distribution
from H that maximizes the (log) likelihood function.
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Maximum Likelihood

Suppose we only observe a single data point, y , drawn from an underlying
distribution. We want to learn the underlying distribution based on this one
data point. Our hypothesis set consists of the following three distributions:

Then according to MLE, we would choose the green distribution.
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Maximum Likelihood as Minimum KL Divergence

Minimizing the empirical KL divergence (cross entropy) is equivalent to
maximizing the (log) likelihood function.
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Learning p(y|x)

Now suppose from a hypothesis set H = {q1 (y |x) , q2 (y |x) , . . .}, we
have selected a q (y |x) to approximate p (y |x) by minimizing the KL
divergence. Let’s write q (y |x) as p̂ (y |x).

Armed with p̂ (y |x) – our estimate of p (y |x) – how should we make a
prediction of y given a value of x?

For continuous y , let ŷ (x) denote our prediction of y given x . There
are many choices: ŷ (x) can be

I mean of p̂ (y |x)
I median of p̂ (y |x)
I mode of p̂ (y |x)
I . . .

It depends on the loss function that we use.
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Learning p(y|x)

A hypothetical p̂ (y |x). What should ŷ (x) be?
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Learning p(y|x)

Given p̂ (y |x), let ŷ (x) be the solution to

ŷ (x) = arg min
c

Ep̂(y |x) [` (y , c)| x ]

Then

` (y , c) = (y − c)2 ⇒ ŷ = E [y |x ]
` (y , c) = |y − c| ⇒ ŷ = Median (y |x)

` (y , c) = I (y 6= c)⇒ ŷ = Mode (y |x)

, where the mean, median, and mode are with respect to p̂ (y |x).
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Learning p(y|x)

For discrete or categorical y , a common choice is to use the 0− 1 loss18:

y
1 2 · · · K

ŷ

1 0 1 · · · 1
2 1 0 · · · 1
...

...
... . . . ...

K 1 1 · · · 0

` (y , ŷ) = I (y 6= ŷ) for y ∈ {1, . . . ,K}

18In the classification setting, the 0− 1 loss is also called the misclassification loss.
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Learning p(y|x)

Given p̂ (y |x), using the 0− 1 loss for prediction, we have:

ŷ (x) = arg min
c∈{1,...,K}

Ep̂(y |x) [I (y 6= c)| x ]

= arg min
c∈{1,...,K}

p̂ (y 6= c|x)

= arg max
c∈{1,...,K}

p̂ (y = c|x) (16)

, i.e., we predict y to be the value (class, category) that has the highest
posterior probability19. This is called the Bayes classifier.

19according to the estimated p̂ (y |x).
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Learning p(y|x)

y ∈ {C1,C2}. The Bayes classifier classifies y to be C1 for x < x0 and C2 for
x > x0. The green line x = x0 is called a decision boundary.
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Learning p(y|x)

The loss function we use here is separate and can be different from the
loss function that we use for learning p (y |x). This is because for
predicting noisy targets, we essentially have two stages:

1 Learning p (y |x)

2 Making prediction of y based on the estimated p (y |x)

These two stages are called learning and prediction20.

20Also called inference and decision.
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Decision Theory

How to make a prediction of y based on its probability distribution is a
subject of decision theory, which is concerned with how to make optimal
decisions given the appropriate probabilities.

Fingerprint Verification
Consider the problem of fingerprint verification. Let y ∈ {−1, 1} denote
whether the fingerprint belongs to the person of interest or not. Let ŷ be
our prediction. There are two types of error we can make here:

y
+1 −1

ŷ +1 no error false positive
−1 false negative no error
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Decision Theory

Fingerprint Verification
Loss functions can be used to control which type of error we want to
minimize: the overall error rate, the false positive rate (FPR), or the false
negative rate (FNR).

y
+1 −1

ŷ +1 0 1
−1 10 0

Supermarket ` (y , ŷ)

y
+1 −1

ŷ +1 0 1000
−1 1 0
CIA ` (y , ŷ)

The choice of ` (y , ŷ) depends on our needs.
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Decision Theory

Fingerprint Verification
If ` (y , ŷ) = I (y 6= ŷ), then the decision rule is the Bayes classifiera

predict ŷ =
{
1 if p (y = 1) ≥ p (y = 0)
0 if p (y = 1) < p (y = 0)

, which minimizes the overall error rate.
aAssuming we know p (y).
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Learning f

The second approach to learning and prediction when y is “noisy” is
to find a deterministic function f such that y = f (x) + e, and let f
be our target function (see page 49 ).

Then let f̂ be our estimated f . Our prediction of y for any value of x
will just be ŷ = f̂ (x).

What should f be? Ideally, f should be the function that best
predicts y in the underlying population. Then we try to learn this f
using our observed sample D. Finally, we use f̂ to make predictions of
y given x .

This approach combines the two stages – learning and prediction –
into one problem: directly learning a function f that maps each x into
a prediction of y .
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Learning f

What is the function that produces the best prediction of y given x in
the underlying population?

The answer, again, depends on the loss function, i.e. on what we
mean by “best.”

A common choice for continuous y is to use the squared-error loss,
which ⇒ f (x) = E [y |x ]21.

The conditional expectation function E [y |x ] is known as the
regression function.

21Thus in this approach, instead of learning p(y |x), we only learn a moment of
p(y |x), which is E [y |x ].
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Learning f

The regression function f (x), which minimizes the expected squared error loss, is
given by the mean of the conditional distribution p (y |x).
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Learning f
When y is discrete or categorical, this approach tries to learn the decision
boundaries directly.
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X
2

x = (x1, x2), y ∈ {orange, blue}

Rather than estimating p (y |x)
and using it to derive a decision
rule (e.g., the Bayes classifier),
this approach focuses on learn-
ing directly the f (here the pur-
ple boundary) that best separates
y = orange and y = blue.
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Learning p(x,y)

The third approach is to learn the entire joint distribution p (x , y)
(see page 49 ).

Let p̂ (x , y) be an estimate of p (x , y). Once we have p̂ (x , y), we can
use it to calculate p̂ (y |x), which in turn, would allow us to make a
prediction of y given x .
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Generative vs. Discriminative Models

Models of the joint distribution p (x , y) are called generative
models22, while models of p (y |x) or f (x) are called discriminative
models23.

While discriminative models are mainly used for prediction tasks,
generative models allows us to do more than just making predictions
of y given x . We can, for example, generate new data points
{(xi , yi )} by drawing from p̂ (x , y). These new data points are called
synthetic data, since they are not real, observed data. The process
of generating synthetic data is called simulation.

22Approach 3 on page 49
23Approach 1 and 2 on page 49
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Scientific Models

Scientific models24 are an important type of generative models that
describe the causal mechanisms that generate p (x , y).

While scientific models can be used for prediction, the goal of learning
causal mechanisms is distinct from the goal of prediction.

24Also called causal models.
© Jiaming Mao



Scientific Models

Scientific vs. Statistical Model
If you want to predict where Mars will be in the night skya, you may do
very well with a model in which Mars revolves around the Earth. You can
estimate, from data, how fast Mars goes around the Earth and where it
should be tonight. But the estimated model does not describe the actual
causal mechanisms. Nor does it need to: if our only goal is prediction,
then we often do not need a scientific model.

aThis example is taken from Shalizi (2019).
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Scientific Models

Because scientific models describe causal mechanisms, what we learn
from one set of data D ∼ p (x , y) can be potentially used to explain
and predict data drawn from another distribution, say p (u, v), if
{x , y} and {u, v} share similar underlying causal mechanisms.

I In other words, what we learn from one observed phenomenon can be
used to explain and predict other related phenomena.

I For example, we can learn individuals’ risk aversion from their
investment behavior, which in turn, can help explain and predict their
career choices.
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Scientific Models

Good scientific models25 can potentially deliver better predictive
performance than statistical models trained on single data sets,
because they can be learned from a combination of data from various
sources that share the same underlying causal mechanisms.

I Apples falling down trees and the earth orbiting around the sun both
inform us of the gravitational constant.

25Think of quantum mechanics!
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Appendix I: Growth Function

Consider binary target functions and hypothesis sets that contain
h : X → {−1,+1}26.

Let H (x1, . . . , xN) = {(h (x1) , . . . , h (xN))| h ∈ H} denote the
dichotomies generated by H on x1, . . . , xN ∈ X .

26The following analysis is all based on binary target functions.
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Appendix I: Growth Function

Definition
The growth function for a hypothesis set H is defined by

mH (N) = max
x1,...,xN∈X

|H (x1, . . . , xN)|

, i.e., mH (N) is the maximum possible number of dichotomies H can
generate on a data set of N pointsa.

Note: mH (N) ≤ 2N . If H is capable of generating all possible dichotomies
on x1, . . . , xN , then H shatters x1, . . . , xN , in which case mH (N) = 2N .

arather than over the entire input space X .
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Appendix I: Growth Function

Positive Rays

H = {h (x) = sign (x − a)}
There are N + 1 dichotomies depending on where you put a.
mH (N) = N + 1
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Appendix I: Growth Function

Convex Sets
H consists of all
h : R2 → {−1,+1} that are
are positive inside some
convex set and negative
elsewhere.

If N points lie on a circle, then
any dichotomy on these points
can be generated by an h that
is positive inside the polygon
that connects the +1 points.
Hence the N points are
shattered by H.

mH (N) = 2N
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Appendix I: VC Dimension

Definition
The Vapnik-Chervonenkis (VC) dimension of H, denoted dvc (H), is
the size of the largest data set that H can shatter.

dvc (H) is the largest value of N for which mH (N) = 2N .

If arbitrarily large finite sets can be shattered by H, then
dvc (H) =∞.

∃ some shattered set of size d ⇒ dvc (H) ≥ d .

No set of size d + 1 is shattered ⇒ dvc (H) ≤ d .
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Appendix I: VC Dimension

Hyperplanes in R2

H is set of lines (linear separators) in R2

can find can an h consistent with 2 data points no matter how they
are labeled:
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Appendix I: VC Dimension

Hyperplanes in R2

can find can an h consistent with 3 non-collinear data points no
matter labeling:
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Appendix I: VC Dimension

Hyperplanes in R2

cannot find can an h consistent with 4 data points for some labeling:

Hence dvc (H) = 3a.

aIn general, dvc
(
hyperplanes in Rd) = d + 1
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Appendix I: Sauer's Lemma

Sauer’s lemma
If dvc (H) <∞, then

mH (N) ≤
dvc (H)∑

i=0

(
N
i

)
(17)

If the VC dimension is finite, then mH (N) can be bounded by a
polynomial in N and the order of the polynomial is dvc (H).
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Appendix I: Sauer's Lemma

We can prove that27

d∑
i=0

(
N
i

)
≤

Nd + 1(
eN
d

)d

Therefore, mH (N) can be further bounded by:

mH (N) ≤ Ndvc (H) + 1 (18)

, or

mH (N) ≤
( eN
dvc (H)

)dvc (H)
(19)

27The second inequality requires N ≥ d .
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Appendix II: Information Theory

Consider a random variable x . How much information is received when we
observe a specific value of x?

Depends on ’degree of surprise’: a highly improbable value conveys
more information than a very likely one.

If we know an event is certain to happen, we would receive no
information when we observe it happens.
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Appendix II: Information Theory

Let h (.) denote the information content of an event. h (.) should satisfy

1 h (a) should be inversely correlated with p (a).

2 For two unrelated events a and b, such that p (ab) = p (a) p (b), we
should have h (ab) = h (a) + h (b).

⇒ we can let:
h (a) = log 1

p (a)
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Appendix II: Entropy

For a discrete random variable x with probability distribution p (x), the
average amount of information transmitted by x is:

H (p) = Ep [h (x)] =
∑

x
p (x) log 1

p (x)

H (p) is called the entropy28 of probability distribution p .

Distributions that are sharply peaked around a few values will have a
relatively low entropy, while those that are spread more evenly across
many values will have higher entropy.

28More precisely, information entropy, or Shannon entropy.
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Appendix II: Entropy

Historically, information entropy is developed to describe the average
amount of information needed to specify the state of a random
variable.

Specifically, if we use base−2 logarithm in the definition of H (p),
then H (p) is a lower bound on the average number of bits needed to
encode a random variable with probability distribution p.

Achieving this bound would require using an optimal coding scheme
designed for p, which assigns shorter codes to higher probability
events and longer codes to less probable events.
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Appendix II: Entropy

Suppose a random variable has 8 states, each being equally likely.
Then we can code these 8 states as 000, 001, 010, 011, 100, 101, 110,
111. In this case, the average length of the code needed to encode the
variable is 3, which is equivalent to its entropy H = 8× 1

8 log2 8 = 3.

If the probabilities of the 8 states are given by(
1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
64 ,

1
64 ,

1
64 ,

1
64

)
, then the optimal coding scheme is 0, 10,

110, 1110, 111100, 111101, 111110, 111111. Under this coding
scheme, the average length of the code needed to encode the variable
is 1

2 × 1 + 1
4 × 2 + 1

8 × 3 + · · · = 2, which is equivalent to its entropy
H = 1

2 log2 2 + 1
4 log2 4 + 1

8 log2 8 + · · · = 2.

© Jiaming Mao



Appendix II: Cross Entropy

If p is the distribution of x , but we use distribution q to describe x
instead, then the average amount of information needed to specify x as a
result of using q instead of p is

H (p, q) = Ep

[
log 1

q (x)

]
=
∑

x
p (x) log 1

q (x)

H (p, q) is called the cross entropy of p and q. In information theory29, it
can be interpreted as the average number of bits needed to encode a
random variable using a coding scheme designed for probability
distribution q rather than the true distribution p.

29Using base-2 logarithm.
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Appendix II: KL Divergence

The relative entropy of q with respect to p, or the Kullback-Leibler
(KL) divergence of q from p, is defined as

DKL (p||q) = H (p, q)−H (p)

=
∑

x
log
(p (x)
q (x)

)
p (x)

, or in the case of continuous random variables,

DKL (p||q) =
∫

log
(p (x)
q (x)

)
p (x) dx

KL divergence represents the average additional information required to
specify x as a result of using q instead of the true distribution p.
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Appendix II: Coin Guess

As an example to illustrate the concepts of entropy, cross entropy, and
relative entropy (KL divergence), let’s play the following games30:

Game 1
I will draw a coin from a bag of 4 coins: a blue, a red, a green, and an
orange coin. Your goal is to guess which color it is with the fewest
questions.

30Source of this example.
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Appendix II: Coin Guess

Game 1
One of the best strategies is this:

Using this strategy, the expected number of questions needed to guess the
coin is 2. This is the entropy29 of the probability distribution
p1 =

(
1
4 ,

1
4 ,

1
4 ,

1
4

)
.
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Appendix II: Coin Guess

Game 2
Now suppose the coins in the bag have the following distribution: 1/2 of
them are blue, 1/4 are red, 1/8 are green, and 1/8 are orange. The
optimal strategy now looks like this:

Under this strategy, the expected
number of questions to guess a coin
is 1

2 × 1 + 1
4 × 2 + 2× 1

8 × 3 = 1.75.
This is the entropy29 of the probability
distribution p2 =

(
1
2 ,

1
4 ,

1
8 ,

1
8

)
.
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Appendix II: Coin Guess

Using Game 1 Strategy on Game 2
What if we still use the strategy for game 1 to play game 2?

Then the expected number of questions needed to guess the coin is
1
2 × 2 + 1

4 × 2 + 2× 1
8 × 2 = 2. This is the cross entropy for using game 1

strategy (optimized for p1) on game 2 (with probability distribution p2).

Obviously, using Game 1 strategy on Game 2 is not optimal. The
additional expected number of questions we need to ask as a result of not
using the optimal strategy is 2− 1.75 = 0.25. This is the KL divergence of
p1 from p2.

© Jiaming Mao



Appendix II: KL Divergence as Loss Function

KL divergence can be interpreted as a measure of dissimilarity between two
distributions. It satisfies DKL (p||q) ≥ 0 if and only if p = q.

Therefore, KL divergence can be used as a loss function to quantify the
difference between probability distributions.
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Appendix II: KL Divergence as Loss Function

Which of the following Q distributions better approximates P?
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Appendix II: KL Divergence as Loss Function
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Appendix II: KL Divergence as Loss Function
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