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Data are everywhere
Purchase histories

FreshDirect - Your Account - Order Details https://www.freshdirect.com/your_account/order_details.jsp?orderId=...

1 of 2 2/1/08 2:59 PM

We're sorry that delivery timeslots are selling out quickly.
Please check available times in your area before you place your order.

Click here to log out

 

 

     
Your Orders

Reserve Delivery

DeliveryPass

Delivery Addresses

     
Payment Options

User Name, Password & Contact Information

President's Picks Newsletter

     
Reminder Service

Order # 2715577754       Status: Delivered    
Credit was issued for this order.

Time:                       

THU 01/03/08 
4 pm - 6 pm

Address:                   

Toni Gantz
21-13 46TH AVE
Long Island City, NY 11101

Phone: (646) 457-2038 
Alt Contact: 

Special delivery instructions:
please ring Gantz/Blei doorbell

Order Total:

$40.79 
Credit Card:                  

Toni L Gantz
MC - xxxxxx3946

Billing Address:

Toni L Gantz
21-13 46TH AVE
Long Island City, NY 11101

Click here to reorder items from this
order in Quickshop.

  

Quantity
Ordered/Delivered

 
Final

Weight
Unit
Price

Options
Price

Final
Price

 

 
Cheese

0.5/0.51 lb Cabot Vermont Cheddar 0.51 lb $7.99/lb  $4.07

 
Dairy

1/1 Friendship Lowfat Cottage Cheese (16oz) $2.89/ea  $2.89

1/1 Nature's Yoke Grade A Jumbo Brown Eggs (1 dozen) $1.49/ea  $1.49

1/1 Santa Barbara Hot Salsa, Fresh (16oz) $2.69/ea  $2.69

1/1 Stonyfield Farm Organic Lowfat Plain Yogurt (32oz) $3.59/ea  $3.59

 
Fruit

3/3 Anjou Pears (Farm Fresh, Med) 1.76 lb $2.49/lb  $4.38

2/2 Cantaloupe (Farm Fresh, Med) $2.00/ea  $4.00 S

 
Grocery

1/1 Fantastic World Foods Organic Whole Wheat Couscous
(12oz)

$1.99/ea  $1.99

1/1 Garden of Eatin' Blue Corn Chips (9oz) $2.49/ea  $2.49

1/1 Goya Low Sodium Chickpeas (15.5oz) $0.89/ea  $0.89

2/2 Marcal 2-Ply Paper Towels, 90ct (1ea) $1.09/ea  $2.18 T

1/1 Muir Glen Organic Tomato Paste (6oz) $0.99/ea  $0.99

1/1 Starkist Solid White Albacore Tuna in Spring Water
(6oz)

$1.89/ea  $1.89

 
Vegetables & Herbs
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Data are everywhereUser ratings

Netflix: Movies You've Seen http://www.netflix.com/MoviesYouveSeen?lnkctr=yas_mrh&idx=71

1 of 2 2/1/08 3:02 PM

Suggestions (2314) Suggestions by Genre Rate Movies Rate Genres Movies You've Rated (115)

Based on your 115 movie ratings, this is the list of movies you've 
seen. As you discover movies on the website that you've seen, rate 
them and they will show up on this list. On this page, you may change 
the rating for any movie you've seen, and you may remove a movie 
from this list by clicking the 'Clear Rating' button.

Sort by > Star Rating

Jump to > 5 Stars

Sort By Title MPAA Genre Star Rating

Ikiru (1952) UR Foreign  

Junebug (2005) R Independent  

La Cage aux Folles (1979) R Comedy  

The Life Aquatic with Steve Zissou (2004) R Comedy  

Lock, Stock and Two Smoking Barrels (1998) R Action & 
Adventure

 

Lost in Translation (2003) R Drama  

Love and Death (1975) PG Comedy  

The Manchurian Candidate (1962) PG-13 Classics  

Memento (2000) R Thrillers  

Midnight Cowboy (1969) R Classics  

Mulholland Drive (2001) R Drama  

North by Northwest (1959) NR Classics  

The Philadelphia Story (1940) UR Classics  

Princess Mononoke (1997) PG-13 Anime & 
Animation

 

Reservoir Dogs (1992) R Thrillers  

Seinfeld: Seasons 1 & 2 (4-Disc Series) (1989) NR Television  

Sideways (2004)  
R Comedy  

The Station Agent (2003) R Independent  

Strangers on a Train: Special Edition (1951) PG Classics  

Strictly Ballroom (1992) PG Comedy  

 Movies, actors, directors, genres
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User ratings
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Data are everywhereDocument collections
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Data are everywhere

Financial markets
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Data are everywhere

Social networks
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Data Science

“What’s in a name? that which we call a rose,
By any other name would smell as sweet.” – Juliet

Machine Learning → Statistics → Econometrics

Along this spectrum, the focus moves from prediction and pattern
discovery to inference about causality and the underlying mechanisms
that generate the observed data.

© Jiaming Mao



Pattern Discovery
Classification

Group these images into 3 groups

D. Blei Interacting with Data 01 11 / 34Which one is a chair?
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Pattern Discovery
Classification

Which product will a consumer buy?

Which market will a firm enter?

Which political candidate will an individual vote for?

© Jiaming Mao



Pattern Discovery
Regression

approximately 1% difference in average yield for the year. For
example, the blue line frame A (the flexible model for corn),
substituting a full day (24 h) at 29° C temperature with a full day
at 40° C temperature results in a predicted yield decline of !7%,
holding all else the same. The green histogram shows the average
exposure to each one-degree Celsius interval during the growing
season (March–August for corn and soybeans and April–
October for cotton).

Coefficients on other explanatory variables (precipitation,
squared precipitation, county fixed effects, and state-specific
quadratic time trends) are not reported here. Precipitation has
a statistically significant inverted-U shape with an estimated
yield-maximizing level of 25.0 inches for corn and 27.2 inches for
soybeans in the flexible step-function specification in Fig. 1. The
precipitation variables are not statistically significant for cotton,
which is not surprising given that 58% of the crop is irrigated.
Fixed effects control for time-invariant heterogeneity (like soil
quality) and state-specific quadratic time trends control for
technological change. With wide geographic variation in average
yields and a three-fold increase in yields over the sample period,
these controls have strong statistical significance.

The pattern of temperature effects is quite robust to specifi-
cation and controls. The same nonlinear temperature effect
emerges whether or not any of the controls, or any subset of
controls, are included in the regressions. We also find the
estimated temperature effects to be very similar if we instead
control for technology and time effects by using year-fixed
effects rather than state-specific quadratic time trends.

Holding Current Growing Regions Fixed, Area-Weighted Average
Yields Are Predicted to Decrease by 30–46% Before the End of the
Century Under the Slowest Hadley III Warming Scenario (B1), and
Decline by 63–82% Under the Most Rapid Warming Scenario (A1FI).
For comparison, a linear model that uses the average growing-
season temperature as an explanatory variable gives predicted
impacts of "16% to #3% (B1) and "30% to #6% (A1FI)
among the three crops. Yield predictions are summarized in Fig.
2. Frame A shows predictions for the medium term (2020–2049)
and frame B for the long term (2070–2099). Predictions are for
changes in total production under four climate scenarios in the
Hadley III climate model. Across all scenarios, model specifi-
cations, and crops, the aggregate impacts show marked declines,
even though yields in some individual counties are projected to
increase. The driving force behind these large and significant
predicted impacts is the projected increase in frequency of
extremely warm temperatures.

Out-of-Sample Model Predictions Are More Accurate than Previous
Statistical Models. The new regression models were compared
with other specifications in the literature by using the root-mean
squared error (RMS) of out-of-sample predictions. Each model
is estimated 1,000 times, randomly choosing 48 years of our
56-year history of yields. The estimates are then used to predict
yield outcomes for the remaining eight years (!14%) of each
sample. We randomly sample whole years and not observations
because yields are spatially correlated in any given year. We
compare our own three specifications of temperature effects
(step function, polynomial, and piecewise linear) with three
alternative specifications: (i) a model with average temperatures
for each of four months (1); (ii) an approximation of growing-
degree days based on monthly average temperatures (Thom’s
formula) (4); and (iii) a measure of growing-degree days,
calculated by using daily mean temperatures (8), that does not
include a separate category for extremely warm temperatures.

As a baseline, we consider a model with county-fixed effects

0 5 10 15 20 25 30 35 40

−0.075

−0.05

−0.025

0

0.025

Temperature (Celsius)

 
Lo

g Y
iel

d (
Bu

sh
els

)
Corn

 

 

 0

 10
 5

Ex
po

su
re

 (D
ay

s)

Step Function
Polynomial (8th−order)
Piecewise Linear

0 5 10 15 20 25 30 35 40

−0.075

−0.05

−0.025

0

0.025

Temperature (Celsius)

 
Lo

g Y
iel

d (
Bu

sh
els

)

Soybeans

 

 

 0

 10
 5

Ex
po

su
re

 (D
ay

s)

Step Function
Polynomial (8th−order)
Piecewise Linear

0 5 10 15 20 25 30 35 40

−0.075

−0.05

−0.025

0

0.025

Temperature (Celsius)

 
Lo

g Y
iel

d (
Ba

les
)

Cotton

 

 

 0

 10
 5

Ex
po

su
re

 (D
ay

s)

Step Function
Polynomial (8th−order)
Piecewise Linear
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Fig. 1. Nonlinear relation between temperature and yields. Graphs at the top of each frame display changes in log yield if the crop is exposed for one day to
a particular 1° C temperature interval where we sum the fraction of a day during which temperatures fall within each interval. The 95% confidence band, after
adjusting for spatial correlation, is added as gray area for the polynomial regression. Curves are centered so that the exposure-weighted impact is zero.
Histograms at the bottom of each frame display the average temperature exposure among all counties in the data.
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Fig. 2. Predicted climate-change impacts on crop yields under the Hadley III
climate model. Graphs display predicted percentage changes in crop yields
under four emissions scenarios. Frame A displays predicted impacts in the
medium term (2020–2049) and frame B shows the long term (2070–2099). A
star indicates the point estimates, and whiskers show the 95% confidence
interval after adjusting for spatial correlation. The color corresponds to the
regression models in Fig. 1.

Schlenker and Roberts PNAS ! September 15, 2009 ! vol. 106 ! no. 37 ! 15595
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Pattern Discovery
Regression

Government debt and GDP growth
© Jiaming Mao



Pattern Discovery
Unsupervised Learning
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Vending machine coin recognition
Left: supervised learning; Right: unsupervised learning
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Pattern Discovery
Unsupervised Learning

Consumer demand
© Jiaming Mao



Causal Inference

Learning patterns in the data is not enough – we want understanding.

© Jiaming Mao



Causal Inference
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Do gold and oil prices cause each other to move or are their comovements caused
by something else?

© Jiaming Mao



Causal Inference

24 CHAPTER 3. MAKING REGRESSION MAKE SENSE

interest before we can use data to study them.1

Figure 3.1.1 plots the CEF of log weekly wages given schooling for a sample of middle-aged white men

from the 1980 Census. The distribution of earnings is also plotted for a few key values: 4, 8, 12, and 16 years

of schooling. The CEF in the Ögure captures the fact thatóthe enormous variation individual circumstances

notwithstandingópeople with more schooling generally earn more, on average. The average earnings gain

associated with a year of schooling is typically about 10 percent.

Figure 3.1.1: Raw data and the CEF of average log weekly wages given schooling. The sample includes

white men aged 40-49 in the 1980 IPUMS 5 percent Öle.

An important complement to the CEF is the law of iterated expectations. This law says that an

unconditional expectation can be written as the population average of the CEF. In other words

E [yi] = EfE [yijXi]g; (3.1.1)

where the outer expectation uses the distribution of Xi. Here is proof of the law of iterated expectations

for continuously distributed (Xi;yi) with joint density fxy (u; t), where fy (tjXi = x) is the conditional

1Examples of pedagogical writing using the ìpopulation-Örstî approach to econometrics include Chamberlain (1984), Gold-

berger (1991), and Manski (1991).

Does receiving more education make you earn more?

© Jiaming Mao



Program Evaluation

Evaluating and predicting the effects of government programs and
economic policies is a central problem in applied economic research:

Effect of worker training programs on employment

Effect of income taxes on labor supply

Effect of zoning regulations on housing prices

Effect of environmental regulations on pollution emission

. . .

© Jiaming Mao



Artificial Intelligence

Research on causal inference methodologies has taken on new
importance with the development of artificial intelligence (AI).

So far, progress in causal inference has been made mainly in
developing methods to learn causal effects or estimate causal models
from data based on our understanding of the underlying mechanisms.

Models of causal mechanisms are developed by human experts.
I Science progresses by formulating models of causal mechanisms, then

conduct experiments or observational studies, and update the models
based on their results.

Building machines that can learn causal mechanisms without human
experts would be the ultimate goal of artificial intelligence.

© Jiaming Mao



Artificial Intelligence
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Road Map

1 Statistical Modeling

2 Causal Inference

3 Structural Estimation

© Jiaming Mao



Road Map

Thematically, we follow the
journey of a hero determined
to seek knowledge from data,
who departs the forest of igno-
rance,

© Jiaming Mao



Road Map

... and journeys to the realm
of patterns, where patterns in
data are discovered and used
to make predictions,

© Jiaming Mao



Road Map

... along the way he encoun-
ters the false prophets of cor-
relation equals causation,

© Jiaming Mao



Road Map

... and then arrives at the
land of causality, where peo-
ple are serious about whether
any two sets of observed phe-
nomena are linked causally,

© Jiaming Mao



Road Map

... from where our hero finally
reaches the mount of scientific
discovery, where the mecha-
nisms that generate the ob-
served phenomena are inves-
tigated in the hope of attain-
ing true knowledge about the
world.

© Jiaming Mao



Statistical Learning

Given variables x and y , how do we characterize the statistical
relationship between the two?

I p (x , y) : joint distribution of x and y1

Oftentimes, we may not be interested in characterizing the full joint
distribution p (x , y). Instead, we are interested in predicting the value
of y based on observed x .

I We want to find a function f (x) for predicting y given values of x .

1In this lecture, we use p (x) to both denote the probability mass function (pmf) if x
is a discrete random variable and the probability density function (pdf) if x is a
continuous random variable.

© Jiaming Mao



Statistical Learning

Let
y = f (x) + e

, where e is an error term.

What is the function f that produces the best prediction of y given x?

Depends on how we measure “best.” Common choice: minimizing the
expected squared-error loss2 E

[
(y − f (x))2

]
⇒ f (x) = E [y |x ].

f (x) = E [y |x ] is the target function that we want to learn3.

2Also commonly called the mean squared error (MSE).
3Learning is also called estimation. We will use the two terms interchangeably.

© Jiaming Mao



Learning f

f̂ (x = 4) = Ave (y |x = 4)

© Jiaming Mao



Learning f

Typically we have few if any data points at a specific value of x .
One solution: relax the set of x over which y is averaged.

f̂ (x = 4) = Ave (y |x ∈ N (x = 4))
, where N (x) is some neighborhood of x .

© Jiaming Mao



Learning f

When x is multi-dimensional, i.e. x = (x1, . . . , xp), nearest neighbor
averaging can work well for small p and large N4.

Nearest neighbor methods can be lousy when p is large, because
neighbors tend to be far away in high dimensions.

I This is called the curse of dimensionality.

4N : the number of data points
© Jiaming Mao



Learning f

Nearest neighbor and the curse of dimensionality

© Jiaming Mao



Learning f

Parametric methods5 of estimating f (x) assume a specific
functional form with a fixed number of parameters.

I Linear regression: f (x) = β0 + β1x1 + · · ·+ βpxp = β′x

Nonparametric methods do not make explicit assumptions about
the functional form of f (x)6.

I Nearest neighbor averaging is a nonparametric method.

5We will use the terms “statistical method” and “statistical model” interchangeably.
6We will also learn methods that make some assumptions about the functional form

of f (x), but allow the number of parameters to grow with data.
© Jiaming Mao
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Learning f

Years of Education
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Learning f

Years of Education
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Linear Fit
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Learning f

Years of Education
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Thin-plate Spline Fit (Smooth)
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Learning f

Years of Education
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Thin-plate Spline Fit (Rough)
Here f̂ fits the data perfectly: f̂ (x) contains not only f (x) but also e.
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Assessing the Goodness of Fit

Let DTR = {(x1, y1) , . . . , (xN , yN)} denote the data on which we estimate
f . This is called training data.

We can assess how well f̂ fits the training data by calculating the training
error:

errorTR = 1
N

∑
i∈DTR

(
yi − f̂ (xi )

)2

However, what we are really interested in is how well f̂ predicts previously
unseen data.

© Jiaming Mao



Assessing the Goodness of Fit

To this end, we can apply f̂ to a set of test data,
DTE = {(x1, y1) , . . . , (xM , yM)}, and calculate the test error:

errorTE = 1
M

∑
i∈DTE

(
yi − f̂ (xi )

)2

When M →∞, errorTE → E
[(

y − f̂ (x)
)2
]

7.

7E[(y − f̂ (x))2] is called the expected error or prediction error.
© Jiaming Mao



Assessing the Goodness of Fit
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Left: true f (black), linear fit (orange), smoothing spline fits (blue & green).
Right: training error (grey), prediction error (red), Var(e) (dashed).
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Assessing the Goodness of Fit
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Left: true f (black), linear fit (orange), smoothing spline fits (blue & green).
Right: training error (grey), prediction error (red), Var(e) (dashed).
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Assessing the Goodness of Fit
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Left: true f (black), linear fit (orange), smoothing spline fits (blue & green).
Right: training error (grey), prediction error (red), Var(e) (dashed).
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Assessing the Goodness of Fit
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The Bias-Variance Trade-off

At a given x ,

EDTR

[(
f (x)− f̂ (x)

)2
]

= Var
(
f̂ (x)

)
+
(
bias

(
f̂ (x)

))2

, where bias
(
f̂ (x)

)
≡ EDTR

[
f̂ (x)

]
− f (x).

© Jiaming Mao



The Bias-Variance Trade-off
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The Bias-Variance Trade-off

Intuitively, the bias term arises due to our model not able to capture
the true f .

The variance term arises because we have limited data.
I Var

(
f̂
)
refers to the amount by which f̂ would change if we estimate

it using a different training data set.

I Var
(
f̂
)

= 0 if we have access to the entire population.

© Jiaming Mao



The Bias-Variance Trade-off

As a general rule, as model flexibility increases, bias
(
f̂
)
will decrease

and Var
(
f̂
)
will increase.

I More flexible models tend to have higher variance because they have
the capacity to follow the data more closely. Thus changing any of the
data points may cause the estimate f̂ to change considerably.

© Jiaming Mao



The Bias-Variance Trade-off

As the flexibility of the model increases, we observe a monotone
decrease in training error and a U-shape in prediction error.

This is due to the bias-variance trade-off: as model flexibility
increases, the bias tends to initially decrease faster than the variance
increases. Then at some point increasing flexibility has little impact
on the bias but starts to significantly increase the variance.

© Jiaming Mao



The Bias-Variance Trade-off

The bias-variance trade-off is a trade-off because it is easy to have a
model with low bias but high variance (e.g., neighborhood averaging)
or one with low variance but high bias (e.g., a constant model). The
challenge lies in finding a model for which both the variance and the
bias are low.

Overfitting refers to the case in which a less flexible model would
have yielded a smaller prediction error.

© Jiaming Mao



The Bias-Variance Trade-off
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Choosing the Optimal Model

y = f (x) = sin (πx)
Two models:

H0 : h (x) = b
H1 : h (x) = ax + b

2 data points

© Jiaming Mao



Choosing the Optimal Model
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Choosing the Optimal Model

Optimal model complexity depends on:

1 Complexity of the true f

2 Sample size

© Jiaming Mao



Adaptive Statistical Models

Modern machine learning methods can be characterized as adaptive
statistical models that adaptively choose their complexity based on
the data.

I The lasso with p−dimensional features is a constant model at its
simplest and a p−dimensional linear regression model at its most
complex.

I A decision tree at its simplest is a (piece-wise) constant model while at
its most complex is a nonparametric neighbor averaging method.

I A neural network becomes a linear model when its weights approach
zero, but can increase its complexity to approximate any functional
form.

© Jiaming Mao



Adaptive Statistical Models

“In this paper, we review and apply several popular methods
from the machine learning literature to the problem of demand
estimation ... we compare these methods to standard econometric
models that are used by practitioners to study demand ... we used
sales data on salty snacks [from] scanner panel data from grocery
stores ... In our results, we find that the six models we use from
the statistics and computer science literature predict demand out
of sample in standard metrics much more accurately than a panel
data or logistic model.” – Bajari et al. (2015)

© Jiaming Mao



Adaptive Statistical ModelsVOL. VOL NO. ISSUE MACHINE LEARNING METHODS FOR DEMAND ESTIMATION 5

Table 1—Model Comparison: Prediction Error

Validation Out-of-Sample
RMSE Std. Err. RMSE Std. Err. Weight

Linear 1.169 0.022 1.193 0.020 6.62%
Stepwise 0.983 0.012 1.004 0.011 12.13%
Forward Stagewise 0.988 0.013 1.003 0.012 0.00%
Lasso 1.178 0.017 1.222 0.012 0.00%
Random Forest 0.943 0.017 0.965 0.015 65.56%
SVM 1.046 0.024 1.068 0.018 15.69%
Bagging 1.355 0.030 1.321 0.025 0.00%
Logit 1.190 0.020 1.234 0.018 0.00%
Combined 0.924 0.946 100.00%
# of Obs 226,952 376,980
Total Obs 1,510,563
% of Total 15.0% 25.0%

yet commonly used in economics, we think
that practitioners will find value in the flex-
ibility, ease-of-use, and scalability of these
methods to a wide variety of applied set-
tings.

One concern has been the relative paucity
of econometric theory for machine learn-
ing models. In related work (Bajari et al.,
2014), we provide asymptotic theory re-
sults for rates of convergence of the under-
lying machine learning models. We show
that while several of the machine learn-
ing models have non-standard asymptotics,
with slower-than-parametric rates of con-
vergence, the model formed by combin-
ing estimates retains standard asymptotic
properties. This simplifies the construction
of standard errors for both parameters and
predictions, making the methods surveyed
here even more accessible for the applied
practitioner.
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Causal Inference

Learning the statistical relationship between x and y tells us nothing
about whether there exists a causal relationship between them.

Causal inference is concerned with the following questions:
1 Does x have a causal effect on y? If so, how large is the effect?

(causal effect learning)
2 If a causal effect exists, what is the mechanism by which it occurs?

(causal mechanism learning)
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Correlation does not imply Causation

Automobile Sales and Search for Indian Restaurants
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Seeing vs. Doing

The do operator:
do(x = a) : set x = a

Barometer readings are useful for predicting rain:

Pr (rain | barometer = low) > Pr (rain | barometer = high)

But hacking a barometer won’t change the probability of raining:

Pr (rain | do (barometer = low)) = Pr (rain | do (barometer = high))
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Seeing vs. Doing

Doing: if x has a causal effect on y , then we can change x and
expect it to cause a change in y .

Seeing: If x is correlated8 with y but does not have a causal effect on
y , then we can only observe the correlation without the ability to
change y by manipulating x .

8We use the term “correlation” in its broad sense to mean statistical dependence
(association).
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Causal vs. Statistical Predictions

Causal prediction: What will y be if I set x = a?
I E [y |do(x = a)]9

Statistical prediction: What will y be if I observe x = a?
I E [y |x = a]

9Assuming we minimize the expected L2 loss in prediction.
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Causal Effect Learning

To learn f (x) = E [y |do (x)], the simplest way is to “just do it”.

Let a be a possible value of x . Randomly select individual units, set
their x = a, and observe the resulting y . In this way, we can generate
data from p (y |do (x)).

I This is in essence what a randomized experiment does.

A nonparametric estimator for f (x) is then

f̂ (x = a) = Ave (y |x = a)
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Causal Effect Learning
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Randomized Experiment

Consider x ∈ {0, 1}. Suppose we are interested in learning the causal
effect of x = 1 on y .

Given a set of experimental units, a randomized controlled trial
(RCT) randomly selects a subset of individual units – call them the
treatment group – to receive x = 1, and assign x = 0 to the rest of
the experimental units – called them the control group.
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Randomized Experiment

Using the experimental language, x is called treatment and y is called
outcome. The average treatment effect (ATE)10 is defined as

ATE .= E [y |do (x = 1)]− E [y |do (x = 0)]
[1]= E [y |x = 1]− E [y |x = 0]

, where [1] follows because randomized experiments generate data from
p (y |do (x)), therefore E [y |x ] = E [y |do (x)].

For data generated by randomized experiments, correlation implies
causation.

10The terms “treatment effect” and “causal effect” are used interchangeably.
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Randomized Experiment
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The Experimental Ideal and Its Limitations

For many causal inference problems, RCTs are impossible or
impractical to run.

I infeasibility (e.g., monetary policy)
I ethical reasons (e.g., smoking and lung cancer)
I cost and duration (e.g., childhood intervention and adult outcomes)
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The Experimental Ideal and Its Limitations

Results from many RCT studies suffer from a lack of external
validity or inability to scale.

I The ATE computed from an RCT study represents the average
treatment effect in the experiment population, which is often different
from – and significantly smaller than – the target population11.

I A treatment may have very different effects when it is applied to a
small RCT sample and when it is applied to a significant proportion of
a large population due to equilibrium effects.

11Fundamentally, this problem is due to the highly heterogeneous nature of many
treatment effects.
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External Validity

“Psychology is the study of psychology students.” – Anonymous

A 2008 survey of the top psychology journals found that 96% of subjects were
from Western, educated, industrialized, rich and democratic (WEIRD) societies –

particularly American undergraduates.
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Observational Studies

For observational data, correlation no longer implies causation.

Consider the following example: suppose we observe patients at two
hospitals:

Hospital Sample Size Recovery Rate

A 1274 97%

B 569 72%
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Observational Studies

Based on this observation, can we conclude that hospital A is better?

If patients are randomly administered to hospitals – in other words, if
the data come from a randomized experiment, then yes.

In observational studies, however, it could well be that hospital B is
associated with worse outcomes because it is actually better, so that
people with worse health problems choose to visit B.
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Observational Studies

In this case, let x denote hospital choice and y denote recovery rate.
Then

E [y |x ] 6= E [y |do(x)]

: when we observe a person visiting hospital B, we would expect a
lower recovery rate (E [y |x = B]) – because she is likely sicker – than
the recovery rate we would expect if we randomly assign a person to
hospital B (E [y |do(x = B)]).

This is called self-selection effect or self-selection bias.
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Observational Studies

Self-selection is of central concern to causal inference based on
observed socio-economic data generated by individual choices.

When individuals choose their own treatments, those who choose to
receive a treatment can be systematically different from those who
choose not to. If we compare their outcomes directly, then we are
comparing apples with oranges12.

12Note that such self-selection effect does not exist under random assignment of
hospitals because the patients administered to each hospital would be similar.
Comparing their outcomes would be comparing apples with apples.
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Observational Studies

To conduct valid causal inference on the effectiveness of hospital
treatment, we need to compare recovery rates of patients with the
same degree of illness who visit each hospital, i.e., we need compare
apples with apples.

Let z denote patient health prior to hospital visit, then

E [y |do(x), z ] = E [y |x , z ]

Conditional on patient illness, correlation between hospital choice and
recovery rate implies causation13!

13To get the overall causal effect,

E [y |do(x)] = Ez [E [y |do(x), z]] = Ez [E [y |x , z]]
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Observational Studies

As the example shows, to conduct causal inference on observational
studies, we need to know how the data are generated (patients choose
to visit different hospitals) and why outcomes may differ among
treatment groups (patients administered to different hospitals are
different in degree of illness and hospitals vary in their effectiveness –
the latter is the treatment effect we are interested in)14.

Causal inference15 requires an understanding of the causal mechanism
that generates the data16.

14But wait! What if hospitals accept different health insurance plans? Suppose
hospital B accepts Medicare but hospital A does not, so that hospital B has many more
older patients. How does this information change our causal inference?

15More precisely, causal effect learning. We will later discuss causal mechanism
learning – how to discover the data-generating causal mechanism in the first place.

16As we will see, such understanding is not only necessary for observational studies
but also necessary for interpreting and using experimental results. Without an
understanding of – or making assumptions on – the underlying mechanism, any causal
effect estimate is meaningless.
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Causal Diagrams

Causal diagrams are graphs that represent causal relationships and
therefore describe our qualitative knowledge about the causal
mechanisms generating our observed data.

In a causal diagram, the nodes (vertices) represent variables, with
directed edges (arrows) representing direct causation. A sequence
of connected nodes is called a path. The path is causal if all its
arrows point in the same direction. Otherwise it is noncausal.
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Causal Diagrams

Basic patterns of causal relationships among three variables
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Correlation and Causation

L has a causal effect on both A and Y . A does not have a causal
effect on Y . A depends on L and on no other causes of Y .

L is called a common cause to A and Y .

There exists an open path connecting A and Y : A← L→ Y .

A and Y are correlated: having information about A improves our
ability to predict Y , even though A does not have a causal effect on
Y .

Example: A : carrying a lighter; Y : lung cancer; L : smoking
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Correlation and Causation

Both A and Y have a causal effect on L. A does not have a causal
effect on Y .

L is called a common effect of A and Y .

On the path A→ L← Y , L is called a collider. The path is said to
be blocked by the collider.

A and Y are statistically independent.

Example: A : family heart disease history; Y : smoking; L : heart
disease
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Correlation and Causation

Box indicates conditioning

A and Y are conditionally independent after conditioning on B and L,
even though they are marginally correlated in both graphs.

Conditioning on B and L block the paths A→ B → Y and
A← L→ Y .

Example: (left) A : smoking; B : tar deposits in lung; Y : lung cancer
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Correlation and Causation

A and Y are conditionally correlated after conditioning on L and C ,
even though they are marginally independent.

Conditioning on collider L or its descendent C opens the path
A→ L← Y , which is blocked otherwise.

Example: (right) A : family heart disease history; Y : smoking; L :
heart disease; C : taking heart disease medication
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Correlation and Causation
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Correlation and Causation

In summary, there are three structural reasons why two variables may be
correlated:

1 One causes the other17

2 They share common causes
3 The analysis is conditioned on their common effects18

17either directly or through mediating variables.
18or the consequences of the common effects.
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Confounding

When two variables share common causes, they are correlated even if
they do not cause each other. This makes it harder for us to learn the
causal effect one has on the other. We call this problem
confounding. The common causes are called confounders.

Self-selection bias is an important type of confounding: when patients
choose hospitals based on their illness, illness is a common cause of
both their treatment (hospital) and their outcome (recovery rate),
and is therefore a confounder in the analysis of the causal effect of
hospital treatment.
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Confounding

A basic strategy to deal with confounding is to condition on the
common causes of treatment and outcome19 (while avoiding
controlling for any of their common effects).

I Conditioning on common causes make two variables independent if
they do not have direct causal effects on each other20.

I Therefore, any association between two variables after their common
causes have been conditioned on should be due to causation21.

19When we condition on a variable, we also say we control for the variable.
20i.e., these two variables should not be correlated unless there is causation.
21Another way to understand this strategy: after common causes are conditioned on,

to the extent that individuals who receive different treatments are still different, the
differences do not affect their outcomes. Hence, when we compare different treatment
groups, we would be effectively comparing apples with apples.
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The Back-Door Criterion

More generally, if we can condition on a set of variables z that block
all open noncausal paths22 between treatment x and outcome y , then
the causal effect of x on y is identified23.

I In this case, z is said to satisfy the back-door criterion24.
I Conditioning on z makes x exogenous to y25.

22Noncausal paths between x and y are called back-door paths. These are the paths
that, if left open, induce correlation between x and y that is not a result of x causing y .

23A causal effect is identified if it is possible to be estimated from observed data.
24We also need to make sure z does not contain variables that are the common effects

of x and y .
25x is said to be exogenous to y if there is no open noncausal path between the two

variables (and y does not cause x). Otherwise, x is endogenous.
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The Back-Door Criterion

Given z that satisfies the back-door criterion, we have:

E [y |do(x), z ] = E [y |x , z ]

The average treatment effect26

ATE (x) .= d
dx E [y |do(x)] (1)

= d
dx Ez [E [y |do(x), z ]]

= d
dx Ez [E [y |x , z ]] = Ez

[
∂

∂x E [y |x , z ]
]

26When x ∈ {0, 1} is binary,

ATE = E [y |do(x = 1)]− E [y |do(x = 0)]
= Ez [E [y |x = 1, z]− E [y |x = 0, z]]

© Jiaming Mao



Causal Effect Learning: Two Stages

	

Identification		
(causal	reasoning)	

Estimation		
(statistical	learning)	
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Causal Effect Learning: Two Stages

Once we have established identification based on causal reasoning, we
can estimate the causal effect of interest using statistical models.

Causal effect learning is therefore a two-stage process: in the first
stage we determine what correlations in the data can tell us about
causation (causal reasoning). In the second stage, we estimate the
correlations from data (statistical learning).
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Causal Effect Learning: Two Stages

For example, suppose we have established that a set of observed
variables z satisfies the back-door criterion, then according to (1),
estimation of the ATE requires estimation of E [y |x , z ].

To estimate E [y |x , z ] from data, we can use a variety of statistical
models:

I parametric or nonparametric
I linear or non-linear
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Causal Effect Learning: Two Stages

For simplicity, let
E [y |x , z ] = β0 + β1x + β2z

Then

ÂTE = Ez

[
∂

∂x Ê [y |x , z ]
]

= β̂1
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Returns to Education

Suppose we are interested in estimating the returns to college education.
We have a sample of full-time employed individuals. Variables include
demographic information, education level (non-college educated,
college-educated), sector of employment, and current wage income.

data = read.csv('educ01.txt')
head(data)

## lnwage sex age educ sector
## 1 10.192260 1 32 0 Service
## 2 9.936083 0 36 0 Agriculture
## 3 9.248990 0 30 0 Agriculture
## 4 10.099410 1 36 0 Service
## 5 9.492408 1 31 0 Service
## 6 10.428530 0 32 0 Manufacturing
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Returns to Education
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Returns to Education
If there are no confounders to education and earnings – if education is
exogenous to earnings, then

E [ lnwage| do (Educ)] = E [ lnwage|Educ] (2)

Thus, we just need to estimate E [ lnwage|Educ] from data27.
Let28

E [ lnwage|Educ] = β0 + α · Educ (3)
, then

ATE = E [ lnwage| do (Educ = 1)]− E [ lnwage| do (Educ = 0)]
= α

27(2) is the identification (causal reasoning) step; (3) is the estimation (statistical
modeling) step.

28When Educ is a continuous variable, there are many functional forms we can choose
for modeling E[ lnwage|Educ]. When Educ is binary, (3) is both linear and
nonparametric.

© Jiaming Mao



Returns to Education

lnwagei = β0 + α · Educi + ei (4)

require(AER)
fit.basic = lm(lnwage ~ educ, data=data)
coeftest(fit.basic)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.2205737 0.0084155 1214.490 < 2.2e-16 ***
## educ 0.8224472 0.0149943 54.851 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Adjusting for Observed Confounders

The no confounding assumption amounts to assuming that individuals
with and without college education are on average the same in all
other aspects that could affect income.

The ATE estimate (α̂) we obtained from (4) is the same as the
difference in mean log wage between college-educated and
non-college-educated workers.

But these individuals are different in some important measures that
could affect income ...
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Adjusting for Observed Confounders

Gender
I There can be gender differences in preference for higher education.
I Men and women enjoy different labor market returns to education.

Age:
I Individuals born in different cohorts could have different preferences for

higher education.
I Age (work experience) is an important determinant of labor market

returns.
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Adjusting for Observed Confounders
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Adjusting for Observed Confounders

If there are no other confounders, then education is exogenous to earnings
conditional on age and sex. We have:

E [ lnwage| do (Educ) , sex, age] = E [ lnwage|Educ, sex, age]

Thus, we need to estimate E [ lnwage|Educ, sex, age] from data.
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Adjusting for Observed Confounders
Regression

Let29

E [ lnwage|Educ, sex, age]
= β0 + α · Educ + β1 · sex + β2 · age + β3 · age2

= α · Educ + β · X

, where β = (β0, β1, β2, β3), X =
(
1, sex, age, age2).

29Suppose sex is coded as a binary variable such that male = 0 and female = 1.
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Adjusting for Observed Confounders
Regression

ATE = E [ lnwage| do (Educ = 1)]− E [ lnwage| do (Educ = 0)]
= Esex,age [E [ lnwage| do (Educ = 1) , sex, age]]
− Esex,age [E [ lnwage| do (Educ = 0) , sex, age]]

= Esex,age (E [ lnwage|Educ = 1, sex, age]
−E [ lnwage|Educ = 0, sex, age])

= α
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Adjusting for Observed Confounders
Regression

lnwagei = α · Educi + β · Xi + ei

fit.ols = lm(lnwage ~ educ + sex + poly(age,2,raw=T), data=data)
coeftest(fit.ols)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.13786695 0.22384811 36.3544 < 2.2e-16 ***
## educ 0.81629233 0.01424411 57.3074 < 2.2e-16 ***
## sex -0.27702209 0.01321296 -20.9659 < 2.2e-16 ***
## poly(age, 2, raw = T)1 0.09377598 0.01234991 7.5933 3.399e-14 ***
## poly(age, 2, raw = T)2 -0.00084304 0.00016757 -5.0311 4.961e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Adjusting for Observed Confounders
Matching

In addition to regression, we could use matching to control for
observed confounding when the treatment variable is discrete.

If college education is assigned to each individual in a randomized
trial, then z = (sex, age) would be independent of Educ:

p (z |Educ = 1) = p (z |Educ = 0) (5)

, i.e., in a sample generated by randomized experiment, z is no longer
a confounder and we can obtain the causal effect of college education
by directly comparing the earnings of college-educated vs.
non-collge-educated workers.
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Adjusting for Observed Confounders
Matching

The goal of matching is to construct a new sample (out of the
observed sample) in which (5) holds true30. We can then treat the
new sample – called the matched sample – as if it is generated by a
randomized trial.

The matched sample would allow us to compare apples with apples:
college and non-college educated workers would have the same
distribution of age and gender.

30Condition (5) is called covariate balance.
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Adjusting for Observed Confounders
Matching

person Gender Age Education lnwage
1 female young 1 11.3
2 male young 1 11.7
3 female old 1 11.4
4 female old 0 10.3
5 male old 0 10.7
6 male young 0 10.5
7 female young 0 10.6
8 male old 0 10.5
9 male young 0 10.6
10 male old 0 11.3

Observed Sample
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Adjusting for Observed Confounders
Matching

person Gender Age Education lnwage
1 female young 1 11.3
2 male young 1 11.7
3 female old 1 11.4
4 female old 0 10.3
6 male young 0 10.5
7 female young 0 10.6

Matched Sample
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Adjusting for Observed Confounders
Matching

Matching estimator for the average treatment effect on the treated
(ATT)31,32:

ATT = 1
3 (11.3 + 11.7 + 11.4− 10.3− 10.5− 10.6)

= 1

31Notice that our matched sample has the same covariate distribution as the original
treated population. Hence the effect we calculate on this sample is the ATT. To obtain
the ATE in the observed sample, we would need to construct two matched samples. In
the first one, we match non-college educated workers to college educated workers as we
have done. This gives us the ATT. In the second one, we match college-educated
workers to non-college educated workers. This would give us the ATU (average
treatment effect on the untreated). Combining the two gives us the ATE.

32If the treatment effect is homogeneous, then ATE = ATT = ATU.
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Adjusting for Observed Confounders
Matching

When matching cannot be exact, we can match based on nearest
neighbors.

Matching could be performed with or without replacement.
I When matching a group with fewer units to a group with more units,

matching with replacement is necessary.
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Adjusting for Observed Confounders
Matching

# Assess balance in the observed sample
require(tableone)
CreateTableOne(data, vars=c("sex","age"), strata="educ")

## Stratified by educ
## 0 1 p test
## n 6850 3150
## sex (mean (SD)) 0.53 (0.50) 0.44 (0.50) <0.001
## age (mean (SD)) 35.25 (5.68) 34.57 (5.42) <0.001
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Adjusting for Observed Confounders
Matching

# Matching based on nearest neighbor
require(MatchIt)
m = matchit(educ ~ sex + age, data, distance="mahalanobis")
m$nn[c(-1,-3),]

## Control Treated
## All 6850 3150
## Matched 3150 3150
## Unmatched 3700 0
## Discarded 0 0

# Create matched sample
m.data = match.data(m)
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Adjusting for Observed Confounders
Matching

# Assess balance in the matched sample
CreateTableOne(m.data, vars=c("sex","age"), strata="educ")

## Stratified by educ
## 0 1 p test
## n 3150 3150
## sex (mean (SD)) 0.44 (0.50) 0.44 (0.50) 1.000
## age (mean (SD)) 34.57 (5.42) 34.57 (5.42) 1.000
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Adjusting for Observed Confounders
Matching

# Matching estimator for ATT
fit.match = lm(lnwage ~ educ, data=m.data)
coeftest(fit.match)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.208691 0.012565 812.475 < 2.2e-16 ***
## educ 0.834330 0.017769 46.953 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Heterogeneous Treatment Effects

We may be interested in how returns to college education differ by
sector. Here sector of employment is a potential effect modifier.

An effect modifier is a variable s such that given treatment x and
outcome y33,

E [y |do (x) , s] 6= E [y |do (x)]

Computing treatment effects separately for individuals with different
values of s allows us to gauge how the effect of a treatment varies
among the population:

ATE (x , s) = ∂

∂x E [y |do(x), s]

33Causally, many variables could be effect modifiers. An exogenous cause of the
outcome variable whose effect interacts with that of the treatment is an effect modifier.
A common cause to both treatment and outcome – a confounder — whose effect on the
outcome interacts with that of the treatment is an effect modifier. A mediator that
mediates the effect of the treatment on the outcome is also an effect modifier.
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Heterogeneous Treatment Effects

require(dplyr)
require(broom)
data %>%

group_by(sector) %>%
do(tidy(lm(lnwage ~ educ + sex + poly(age,2,raw=T),

data=.))[2,c(1,2,3)])

## # A tibble: 3 x 4
## # Groups: sector [3]
## sector term estimate std.error
## <chr> <chr> <dbl> <dbl>
## 1 Agriculture educ 0.700 0.0271
## 2 Manufacturing educ 0.697 0.0150
## 3 Service educ 0.759 0.0137
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Unmeasured Confounding

Age and Gender are not the only confounders in the relationship
between education and earnings. One of the most important factor
confounding this relationship is ability: individuals with higher abilities
are more likely to attend and graduate from college, while they are
also more likely to earn more regardless of educational attainment.

Ability, however, is unobserved (if not ill-defined): it is an
unmeasured confounder34.

34In the econometrics and statistics literature, if all confounders are observed, we say
there is selection on observables (or, there exists no unmeasured confounding). If
some confounders are unobserved, we say there is selection on unobservables (or, there
exists unmeasured confounding).
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Unmeasured Confounding

In the presence of unmeasured confounding, we can sometimes still
find a set of observed variables that can block all noncausal paths
between treatment and outcome and thus satisfy the back-door
criterion35.

When this is not true, however, we need to find new ways to identify
the causal effect of interest.

35See Appendix Figure 1. W is the confounder to X and Y , but we do not need to
observe it: the causal effect of X on Y is identifiable by conditioning on C .
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Instrumental Variables

An instrumental variable (IV) is a variable that is (1) correlated
with the treatment; (2) exogenous to the outcome36; (3) affects the
outcome only through its correlation with the treatment.

36Condition (2) is desired but not strictly necessary. More generally, an instrumental
variable satisfies the following conditions on a causal graph: (1) it is correlated with the
treatment; (2) every open path connecting the instrument with the outcome has an
arrow pointing into the treatment.
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Instrumental Variables

Suppose we now observe parents’ educational level (at least one college,
no college) for each individual.

data = read.csv('educ02.txt')
head(data)

## lnwage sex age educ sector paeduc
## 1 10.192260 1 32 0 Service 0
## 2 9.936083 0 36 0 Agriculture 0
## 3 9.248990 0 30 0 Agriculture 0
## 4 10.099410 1 36 0 Service 0
## 5 9.492408 1 31 0 Service 0
## 6 10.428530 0 32 0 Manufacturing 0

cor(data$paeduc,data$educ)

## [1] 0.5211922
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Instrumental Variables

College educated parents can have positive impact on their children’s
college attainment, either through better home education or because
they are more capable of affording college education.

If we assume that more highly educated parents
1 do not produce children that have higher unobserved abilities37 or

unobserved preferences38 that affect education and earnings
2 do not directly help their children obtain higher paying jobs

Then the only way parents’ education affects an individual’s earnings
is through its effect on her educational attainment39. Thus PaEduc
can serve as an instrument for Educ.

37intelligence, social skills, good habits, etc.
38preference towards work, achievement, wealth, intellectual fulfillment, etc.
39In essence, we are assuming that more highly educated parents only help to increase

their children’s educational attainment, with no other discernible effects related to
school and work.
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Instrumental Variables
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Instrumental Variables

If the effect of college education on income is linearly separable from the
effect of other factors U (age, gender, ability, etc.):

lnwage = α · Educ + U

Then

Cov (lnwage,PaEduc) = Cov (α · Educ + U,PaEduc)
= α · Cov (Educ,PaEduc)

⇒
α = Cov (lnwage,PaEduc)

Cov (Educ,PaEduc)
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Instrumental Variables

# if we believe paeduc may be correlated with age or gender
# for example, parents of older individuals tend to have lower
# education due to cohort effects, then we can use paeduc as instrument
# for educ conditional on these variables.

fit.iv = ivreg(lnwage ~ educ + sex + poly(age,2,raw=T) |
paeduc + sex + poly(age,2,raw=T), data=data)

coeftest(fit.iv)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.26375807 0.22851155 36.1634 < 2.2e-16 ***
## educ 0.53184251 0.02782403 19.1145 < 2.2e-16 ***
## sex -0.30148429 0.01362766 -22.1230 < 2.2e-16 ***
## poly(age, 2, raw = T)1 0.09372078 0.01259387 7.4418 1.075e-13 ***
## poly(age, 2, raw = T)2 -0.00086055 0.00017088 -5.0359 4.838e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Instrumental Variables

In this IV strategy, the source of exogenous variation comes from
PaEduc not Educ.

To obtain the treatment effect of Educ on lnwage, we “net out” the
effect of PaEduc on Educ from the effect of PaEduc on lnwage.

But what if some individuals are always going to college, while some
are never going to college, regardless of their parents’ educational
level?40 The treatment effect of college education for these people
would be not identified.

40For example, smart children living in areas with good public schools may have a
high probability of going to college regardless of their parents’ educational level.
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Instrumental Variables

α can be understood as the effect of Educ on lnwage for those whose
Educ changes in response to changes in PaEduc.

When a treatment effect is heterogeneous among the population, the
IV strategy identifies a local average treatment effect (LATE) –
the average treatment effect among those whose treatment status
changes in response to or in association with the instrument41.

41If the treatment effect is homogeneous, then LATE = ATE.
© Jiaming Mao



Fixed Effects
Suppose now we know that our sample of individuals are collected from
different cities.

data = read.csv('educ03.txt')
head(data)

## lnwage sex age educ sector paeduc city
## 1 10.192260 1 32 0 Service 0 1
## 2 9.936083 0 36 0 Agriculture 0 1
## 3 9.248990 0 30 0 Agriculture 0 1
## 4 10.099410 1 36 0 Service 0 1
## 5 9.492408 1 31 0 Service 0 1
## 6 10.428530 0 32 0 Manufacturing 0 1

# number of cities
length(unique(data$city))

## [1] 50

© Jiaming Mao



Fixed Effects

What might be problems?

Higher income cities have better-paying jobs and better schools42 –
individuals who attend schools in these cities are more likely to go to
college, and are more likely to earn higher wages upon graduation.

Higher income cities may through migration attract individuals who
have higher ability and better education43.

42elementary, middle, and high schools
43For the same reasons, parents of individuals in higher income cities also tend to

have higher educational attainment. To the extent that parents’ education affects
children’s education, their children will be more likely to go to college and – upon
graduation, if working in the same high-income cities – earn higher wages.
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Fixed Effects
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Fixed Effects

While ability, school quality, and productivity are all unobserved, if we
assume they are the same for each individual within a city – if we assume
these variables mainly vary at the city level – then we can control for them
by treating city itself as a confounder:

E [ lnwage| do (Educ) , sex, age, city] = E [ lnwage|Educ, sex, age, city]

Statistically, let i denote individual and m denote city. Let

lnwagei ,m = τm + α · Educi ,m + β · Xi ,m + ei ,m

Then τm are called city fixed effects and α is our desired ATE.
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Fixed Effects

require(lfe)
fit.fe = felm(lnwage ~ educ + sex + poly(age,2,raw=T) | city, data)
coeftest(fit.fe)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## educ 0.69942765 0.01390108 50.3146 < 2.2e-16 ***
## sex -0.28637255 0.01251160 -22.8886 < 2.2e-16 ***
## poly(age, 2, raw = T)1 0.09507713 0.01168000 8.1402 4.420e-16 ***
## poly(age, 2, raw = T)2 -0.00086538 0.00015848 -5.4604 4.865e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Fixed Effects

# Since ability varies mainly at the individual rather than city level
# (even though high-income cities may on average attract higher ability
# individuals), a city fixed effect may not eliminate ability
# confounding. In this case, we can combine fixed effect modeling
# with instrumental variables: Conditional on city, parents' education
# remains a valid IV.

fit.feiv = felm(lnwage ~ sex + poly(age,2,raw=T) |
city | (educ ~ paeduc), data)

coeftest(fit.feiv)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## sex -0.30502075 0.01281397 -23.8038 < 2.2e-16 ***
## poly(age, 2, raw = T)1 0.09487645 0.01182513 8.0233 1.146e-15 ***
## poly(age, 2, raw = T)2 -0.00087629 0.00016046 -5.4613 4.842e-08 ***
## `educ(fit)` 0.48021022 0.02674655 17.9541 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1© Jiaming Mao



Quasi Experiments

In non-experimental settings, circumstances sometimes produce what
appears to be randomization.

Because of man-made rules or external events, the treatment of some
individual occurs as if it is random random.

Such “as if” randomness produces a quasi-experiment or natural
experiment. Causal inference strategies based on exploiting such “as
if” randomness are called quasi-experimental designs.
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Regression Discontinuity Design

Suppose now we have information on each individual’s college entrance
exam score (above or below admission cutoff).

data = read.csv('educ04.txt')
head(data)

## lnwage sex age educ sector paeduc city test
## 1 10.192260 1 32 0 Service 0 1 -46
## 2 9.936083 0 36 0 Agriculture 0 1 -35
## 3 9.248990 0 30 0 Agriculture 0 1 -49
## 4 10.099410 1 36 0 Service 0 1 -7
## 5 9.492408 1 31 0 Service 0 1 -38
## 6 10.428530 0 32 0 Manufacturing 0 1 -35
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Regression Discontinuity Design

Admission cutoff provides a natural experiment on college attendance.

Students just above or below an admission cutoff are likely to be very
similar on observable and unobservable characteristics. Due to chance
variation (perhaps due to how they feel on the exam day), those who
are above the cutoff have the opportunity to go to college, while
those are below do not. For these students, college attendance is as if
random. Comparing them produces an estimate of the causal effect of
college education.
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Regression Discontinuity Design

At the heart of the regression discontinuity design (RDD) are discrete
treatment status being determined by an underlying continuous running
variable:

Educ =
{
1 if test ≥ 0
0 o.w.

© Jiaming Mao



Regression Discontinuity Design
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Regression Discontinuity Design

The causal diagram implies that

E [ lnwage| do (Educ) , test] = E [ lnwage|Educ, test]

But there is no way to compare E [ lnwage|Educ = 1, test = c] with
E [ lnwage|Educ = 0, test = c]44, since at any c 6= 0 we either only have
Educ = 1 or Educ=0.

In this case we have a lack of overlap.

44unless we rely on extrapolation based on functional form assumptions.
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Regression Discontinuity Design

Only in a small neighborhood around test = 0 do we observe both college
and non-college educated individuals. Hence we can compare
E [ lnwage|Educ = 1, test] with E [ lnwage|Educ = 0, test] for individuals in
this small neighborhood.

The result is an estimate of a LATE – average treatment effect for those
individuals at the cutoff. Formally,

LATE = lim
test→0+

E [ lnwage|Educ = 1, test]

− lim
test→0

E [ lnwage|Educ = 0, test]
[1]= lim

test→0+
E [ lnwage| test]− lim

test→0
E [ lnwage| test]

, where [1] follows since Educ = I (test ≥ 0).
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Regression Discontinuity Design
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Regression Discontinuity Design

require(rddtools)
rdd.data = rdd_data(y=data$lnwage, x=data$test, cutpoint=0)
fit.rdd = rdd_reg_lm(rdd.data)
coeftest(fit.rdd)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0462e+01 1.6606e-02 629.9938 <2e-16 ***
## D 3.2915e-01 2.6519e-02 12.4120 <2e-16 ***
## x 1.0795e-02 5.9674e-04 18.0895 <2e-16 ***
## x_right 9.6842e-04 1.3256e-03 0.7305 0.4651
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Regression Discontinuity Design

In practice, college attendance is not completely determined by exam
scores in our data.

aggregate(educ ~ (test>0),data,mean)

## test > 0 educ
## 1 FALSE 0.009368761
## 2 TRUE 0.885353970

Instead, an admission cutoff is associated with a discontinuous jump in the
probability of college attendance. This is called a fuzzy RDD45.

45In contrast, an RDD in which treatment status is a deterministic function of the
running variable is called a sharp RDD.
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Regression Discontinuity Design
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Regression Discontinuity Design

Because college education is not entirely determined by exam scores,
conditional on exam score, the college attendance decision can still be
an endogenous one.

Let z = I (test ≥ 0). If we assume that in a small neighborhood
around test = 0, z is almost exogenous, then we can use it as an
instrument for Educ for individuals in that neighborhood to identify
their local treatment effect.

In general, when a quasi-experiment partially determines the
treatment status, its “as if” randomness can be used as an instrument
for identifying the causal effect of interest.
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Regression Discontinuity Design

fzrdd.data = rdd_data(y=data$lnwage, x=data$test, cutpoint=0, z=data$educ)
fit.fzrdd = rdd_reg_lm(fzrdd.data)
coeftest(fit.fzrdd)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.46177322 0.01638770 638.392 <2e-16 ***
## D 0.41754974 0.03319830 12.577 <2e-16 ***
## x 0.01079469 0.00058889 18.331 <2e-16 ***
## x_right -0.00135111 0.00138153 -0.978 0.3281
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Regression Discontinuity Design

# we can also control for other observed confounders and exogenous
# variables (X). One way to do this is to first regress lnwage on X
# and obtain its residuals (y). Doing so allows us to "parcel out"
# the effect of X on lnwage. We can then estimate the causal effect of
# Educ on y based on a (fuzzy) RDD.

fit = lm(lnwage ~ factor(city) + sex + poly(age,2,raw=T), data=data)
y = fit$residuals
fzrddX.data = rdd_data(y=y, x=data$test, cutpoint=0, z=data$educ)
fit.fzrddX = rdd_reg_lm(fzrddX.data)
coeftest(fit.fzrddX)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.07882535 0.01486951 -5.3011 1.175e-07 ***
## D 0.46886185 0.03012275 15.5650 < 2.2e-16 ***
## x 0.00590748 0.00053433 11.0558 < 2.2e-16 ***
## x_right -0.00200588 0.00125354 -1.6002 0.1096
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Difference-in-Differences

Suppose now we observe a repeated cross section of individuals in
M = 50 cities for T = 10 years.

In addition, we know that at year 5, several cities started a college
tuition subsidy program intended to help students afford college. The
presence of such a program is coded as policy ∈ {0, 1}.
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Difference-in-Differences

data = read.csv('educ05.txt')
head(data)

## t city lnwage sex age educ sector paeduc policy
## 1 1 1 10.192260 1 32 0 Service 0 0
## 2 1 1 9.936083 0 36 0 Agriculture 0 0
## 3 1 1 9.248990 0 30 0 Agriculture 0 0
## 4 1 1 10.099410 1 36 0 Service 0 0
## 5 1 1 9.492408 1 31 0 Service 0 0
## 6 1 1 10.428530 0 32 0 Manufacturing 0 0

# number of cities that implemented the program
length(unique(data$city[data$policy==1]))

## [1] 9
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Difference-in-Differences

Let’s first discuss whether such a program is effective in promoting college
attendance.

If we compare a city that implemented the program before and after
year 5, the change in its college attainment rate may be due to
factors other than the subsidy program.

I For example, the educational level of a city’s population may be
naturally rising even in the absence of the subsidy program.

If we compare cities that implemented the program with those that
did not after year 5, our comparison will be biased if the two groups
of cities are different (selection bias).

I For example, the cities that implemented the program could have lower
human capital.
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Difference-in-Differences

If we assume, however, that in the absence of the program, the cities
that implemented the program (treatment group) and the cities that
did not implement the program (control group) are different in the
level of their college attainment rate but similar in trend over
time46,47, then we can identify the causal effect of the subsidy
program by comparing the change in college attainment rate of the
treatment group vs. the control group before and after program
implementation.

46due to being subject to the same factors that affect a city’s educational level over
time, say, national increase in the demand for high-skill workers.

47In essence, we are assuming that, absent treatment, the difference between the
treatment and the group group is time-invariant. Thus, any difference in their difference
must be due to the treatment effect.
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Difference-in-Differences

The Difference-in-Differences Design
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Difference-in-Differences

Let Educ denote the college attainment rate of a city. Let pre and post
denote pre-program (year≤ 5) and post-program (year> 5).

Given the parallel trend assumption, the difference-in-differences
(DID) estimate of the causal effect of the program is48

α =
(
E
[
Educ

∣∣∣ treated, post]− E
[
Educ

∣∣∣ treated, pre]) (6)

−
(
E
[
Educ

∣∣∣ control, post]− E
[
Educ

∣∣∣ control, pre])

48Technically, α is an ATT because the parallel trend assumption assumes what the
treated cities would be like in the absence of the program, not what the control cities
would be like given the program.
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Difference-in-Differences

Equivalently, we can obtain α by estimating the following model49:

Educm,t = τm + λt + α · policym,t + em,t (7)

, where τm and λt are city and year fixed effects, and
policym,t = I (m ∈ treated & t ∈ post).

49The fixed effect model satisfies the parallel trend assumption because differences
among units (τm) are time-invariant, while all units evolve according to the same time
trend (λt) in the absence of treatment.
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Difference-in-Differences
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Difference-in-Differences
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Difference-in-Differences

clist = unique(data$city[data$policy==1]) # treated cities
data$g = (data$city %in% clist) # g=0 if control; g=1 if treated
data$p = (data$t > 5) # p=0 if pre; p=1 if post

D = data %>% group_by(p,g) %>% summarise(educ = mean(educ))

ATT = (D$educ[D$g==1 & D$p==1] - D$educ[D$g==1 & D$p==0]) -
(D$educ[D$g==0 & D$p==1] - D$educ[D$g==0 & D$p==0])

ATT

## [1] 0.03935337
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Difference-in-Differences

coeftest(felm(educ ~ policy | t + city, data))

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## policy 0.0393534 0.0056219 7.0001 2.574e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Difference-in-Differences

Now let’s come back to the problem of evaluating the causal effect of
college education on income.

If, conditional on city and year, the implementation of the subsidy
program is exogenous to individual earnings – the program is a
quasi-experiment – then, since we know it promotes college
attainment, it can serve as an instrument for Educ in estimating its
effect on lnwage.

This requires another parallel trend assumption: absent the program,
cities in the treatment group would have the same trend in income as
those in the control group.
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Difference-in-Differences
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Difference-in-Differences

# here we also include individual covariates (observed confounders)
fit.did = felm(lnwage ~ sex + poly(age,2,raw=T) |

t + city | (educ ~ policy), data)
coeftest(fit.did)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## sex -3.0334e-01 2.6932e-02 -11.2629 < 2e-16 ***
## poly(age, 2, raw = T)1 9.4895e-02 3.9460e-03 24.0483 < 2e-16 ***
## poly(age, 2, raw = T)2 -8.7531e-04 5.0545e-05 -17.3174 < 2e-16 ***
## `educ(fit)` 5.0000e-01 2.0394e-01 2.4518 0.01422 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Model Comparison
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Going Beyond Linearity

So far we have been dealing with a binary treatment variable and
have been relying exclusively on linear statistical modeling for each of
our causal inference designs.

When the treatment variable has many levels or is continuous, its
causal relation with the outcome variable is often nonlinear and the
treatment effect is non-constant:

ATE (x) = d
dx E [y |do(x)]
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Going Beyond Linearity

To the extent that a causal effect is heterogeneous, the ATE of a
large population conveys limited information.

To have a better understanding, we need to know how treatment
effects vary among the population – how a given treatment will have
different effects on different individuals.
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Going Beyond Linearity

Given a set of known effect modifiers s, we can estimate the
heterogeneous treatment effect (HTE):

ATE (x , s) = ∂

∂x E [y |do(x), s]

In a large socio-economic sample, the degree of heterogeneity can be
substantial: individuals, firms, and markets vary in numerous ways.
This requires the estimation of high-dimensional HTE.
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Going Beyond Linearity

Estimation of non-constant and (high-dimensional) heterogeneous
causal effects requires sophisticated statistical models.

Combining sound causal inference strategy (based on careful causal
reasoning) with state-of-the-art statistical modeling allows us to most
accurately estimate and predict causal effects of interest.
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Structural Estimation

Causal models, or scientific models, are mathematical models of
causal mechanisms.

In the econometrics literature, causal models based on economic
theory are referred to as structural models. These models use
economic theory to specify the functional forms of causal
relationships.
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Structural Estimation

The estimation of structural models is called structural estimation –
rather than learning a specific causal effect, structural estimation aims
to estimate all the parameters of a causal model.

In contrast, the use of statistical models for learning causal effects
(based on given identification strategies) has been called
reduced-form analysis in the econometrics literature50.

50Historically, given a structural model g (x , y) = 0 that specifies the relationship
governing exogenous variable x and endogenous variable y , if y is solved as a function of
x , i.e. y = f (x), then f is referred to as the reduced form of g .
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Structural Estimation

Scientific vs. Statistical Model
If you want to predict where Mars will be in the night skya, you may do
very well with a model in which Mars revolves around the Earth. You can
estimate, from data, how fast Mars goes around the Earth and where it
should be tonight. But the estimated model does not describe the actual
causal mechanisms.

aExample taken from Shalizi (2016).
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Structural Estimation

Returns to College Education
When we estimate the returns to college education in a reduced-form
analysis, what are we estimating?

Wage is an equilibrium outcome. How much wage a person would
earn if she obtains a college degree depends on labor demand and
labor supply. Labor supply, in turn, depends on how many other
people have received college educationa.

The effect of college education on wage is clearly different if only one
person receives college education and if all individuals do.

aDisregarding the heterogeneity in college education (good college, bad
college, history major, economics major) and treating it as homogeneous here.
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Structural Estimation

Returns to College Education

The effect estimated in a reduced-form analysis is the effect of an
individual receiving college education on her wage conditional on
current labor demand and labor supply.

Structural analysis would estimate labor demand and labor supply
curves directly from data and compute the resulting equilibrium
returns to education.

Based on the estimated structural model, we can predict how returns
to college education change when either demand or supply shifts due
to exogenous forces (counterfactual prediction).
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Auction

Model

N risk-neutral bidders

Independent private value vi ∼i .i .d . F (.)

Each bidder knows her own vi and the distribution F , but not the vi
of others

Observed bids are the Bayesian Nash equilibrium outcome of the game
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Auction

Model

Equilibrium bidding strategy:

bi = vi −
1

F (vi )N−1

∫ vi

0
F (x)N−1 dx

= vi −
1

N − 1
GN (bi )
gN (bi )

, where GN (.) and gN (.) are the c.d.f. and p.d.f. of the bid distribution.
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Auction

Structural Estimation
1 For each auctiona, nonparametrically estimate GN (.) and gN (.) from

observed bids {b1, . . . , bN}.
2 For each bidder, calculate

v̂i = bi + 1
N − 1

ĜN (bi )
ĝN (bi )

(8)

3 Use v̂i to nonparametrically estimate F (.)
4 F̂ (.) can be used to predict the winning bid in an N−bidder auction:

E [max {bi}] = E
[

max
{
vi −

1
F̂ (vi )N−1

∫ vi

0
F̂ (x)N−1 dx

}]

aSee Guerre et al. (2000). © Jiaming Mao
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Auction

We are interested in predicting the winning bid (bmax) based on the
number of bidders N. Let f (N) .= E [bmax|N]51.

The problem is to learn f (N) from data. Here, theory helps specify
the functional form of f (N).

Theory also helps us to learn the values of the bidders (equation (8))
by specifying the functional form of the mapping from {vi} to {bi}.

51If the number of bidders is exogenous (such as in a randomized experiment), then
f (N) represents the causal effect of N on bmax.
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Monopoly

A monopoly firm’s pricing and sales in different geographical markets
Data: price, sales, average income, population for each market
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Monopoly

Model: Demand

In each market m with population Nm and mean income Im, consumers
choose between the monopoly product and an outside good. Individual
utilities are given by:

Um
i0 = εmi0 (9)

Um
i1 = β0 + β1Im − β2pm + εmi1

, where (Um
i0 ,Um

i1 ) are respectively the indirect utilities of the outside good
and the monopoly product, and εmij ∼ Gumbel (0, 1).

(9) ⇒ qm ∼ Binomial (Nm, πm), where

πm = exp (β0 + β1Im − β2pm)
1 + exp (β0 + β1Im − β2pm)
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Monopoly

Model: Supply

For each market m, given demand qm (p), the monopoly firm chooses p to
maximize:

max
p
{p × qm (p)− c(qm (p))} (10)

, where c (q) is the firm’s cost function.

(10) ⇒
c ′ (qm) = pm +

[
q′m (pm)

]−1 qm (11)
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Monopoly

Q

P
est. demand est. mc monopoly supply

Estimated marginal cost and demand curves
for a market with median income and population © Jiaming Mao



Monopoly

Here, theory helps us to learn the marginal cost function of the
monopoly firm as well as the consumer utility function.

Using the estimation results, we can conduct welfare analysis and
make normative statements.

I For example, calculating the total deadweight loss due to monopoly.
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Counterfactual Simulation

One of the benefits of learning a structural model is that it allows us
to predict the effect of a completely new treatment – a treatment
that has never been observed before.

Once we have estimated a structural model with variables
{x1, . . . , xn}, we can use it to generate data from the distribution
p (x1, . . . , xn| do (xj = a)) for any hypothetical treatment do (xj = a).
This is called counterfactual simulation.
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Counterfactual Simulation

What if Caesar never crossed the Rubicon?
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Counterfactual Simulation

What happens if the government imposes a 20% sales tax on the
monopoly firm?

After tax:

∆ Consumer Surplus: −27.83%
∆ Total Surplus: −27.95%

Tax incidence:

Consumer: 26.65%
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