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Classification

Classification is a predictive task in which the response variable y is
discrete or categorical1.

Examples:

Is a credit card user going to default?
Is a project going to be successful?
Which product will a consumer buy?
Which market will a firm enter?
Which political candidate will an individual vote for?

1y is discrete if it takes on a set of discrete numerical values. y is categorical if it
belongs to a set of categories (also called classes).
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Binary Classification

For binary classification problems, let y be coded as {0, 1}.

We can try to model y using the following linear regression model:

y = x ′β + e (1)

Estimating (1) ⇒ β̂. Then given a data point x0, we would classify y0 as

ŷ0 =
{
1 if x ′0β̂ > 1

2
0 o.w.

, which yields the decision boundary: x ′β̂ − 1
2 = 0.
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Income and Voting

Data: income and voting records of 200 voters
income: income quantile
vote: whether voted in the last election
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Income and Voting
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Income and Voting

require(AER)
attach(read.csv("voting.txt"))
coeftest(lm(vote ~ income))

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.020419 0.047237 0.4323 0.666
## income 1.310588 0.083000 15.7902 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Income and Voting

To predict vote at income = 0.5:

x0 <- data.frame(income=.5)
f_hat <- predict(lm(vote ~ income),x0)
f_hat

## 1
## 0.6757133

vote_hat <- as.numeric(f_hat>.5)
vote_hat

## [1] 1
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Income and Voting

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0
1.

5

income

vo
te

income= 0.37
data
linear prediction
linear fit

© Jiaming Mao



Logistic Regression

The least squares linear regression method is not a probabilistic model2.
The probabilistic approach to classify y is to first estimate p (y |x) and
then let

ŷ (x) = arg max
c∈{0,1}

{p̂ (y = c|x)} (2)

=
{
1 if p̂ (y = 1|x) > 1

2
0 o.w.

(2) is the Bayes classifier with decision boundary given by
p̂ (y = 1|x)− 1

2 = 0.

2Although it is possible to give (1) a probabilistic reading: notice that when
y ∈ {0, 1}, E (y |x) = 1 · Pr (y = 1|x) + 0 · Pr (y = 0|x) = Pr (y = 1|x). Hence one can
interpret the least squares linear regression estimate x ′β̂ as an estimate of Pr (y = 1|x).
However, since x ′β̂ is not bounded by [0, 1], it is not a proper probabilistic model.
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Logistic Regression

The logistic regression model assumes3

Pr (y = 1|x) = σ
(
x ′β
)

= exp (x ′β)
1 + exp (x ′β) (3)

, where σ (z) ≡ (1 + e−z)−1 is called the logistic function or sigmoid
function4.

3More precisely, the logistic regression model is a discriminative probabilistic model
with p (y |x) as the target function and H = {q (y |x) : q (y = 1|x) = σ (x ′β)}, i.e.,

Pr (y |x) = p (y |x) true distribution

Pr (y |x) = q (y |x) =
{
σ (x ′β) y = 1
1− σ (x ′β) y = 0

hypothesis

4The logistic function defines the CDF of the standard logistic distribution:

F (x) = exp (x)
1 + exp (x)
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Logistic Regression

(3) ⇒

log Pr (y = 1|x)
Pr (y = 0|x) = x ′β

Logistic regression assumes that the log odds is a linear function5,6.

5If p denotes the probability of “success”, then p
1−p is the odds of success.

6The function g (p) = log p
1−p – inverse of the sigmoid – is called the logit function.
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Logistic Regression

Sigmoid Function
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Logistic Regression

The logistic regression model can be estimated by maximum likelihood.
Given data D = {(x1, y1) , . . . , (xN , yN)},

β̂ = arg max
β

logL (β) (4)

, where

logL (β) =
N∑

i=1
log Pr (yi | xi ;β)

=
N∑

i=1

[
yi log σ

(
x ′i β
)

+ (1− yi ) log
(
1− σ

(
x ′i β
))]
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Logistic Regression

Equivalently, logistic regression minimizes the cross-entropy error7:

Ein (β) = − 1
N

N∑
i=1

log Pr (yi | xi ;β) (5)

Note that Ein (β) is convex and differentiable,

∇Ein (β) = 1
N

N∑
i=1

(
σ
(
x ′i β
)
− yi

)
xi

7Recall that given true distribution p (y |x) and hypothesis q (y |x), cross-entropy

H (p, q) = −
∑

x

p ( y | x) log q ( y | x)

, with the in-sample expression being − 1
N
∑N

i=1 log q ( yi | xi ).
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Logistic Regression

8

8Let y ∈ {−1, 1}, then

Pr ( y | x ;β) =
{
σ (x ′β) y = 1
1− σ (x ′β) y = −1

= σ
(
y · x ′β

)
, where we use the fact that σ (−z) = 1− σ (z). Therefore, (5) can be written as

Ein (β) = − 1
N

N∑
i=1

log σ
(
yi · x ′i β

)
(6)

= 1
N

N∑
i=1

log
(
1 + exp

(
−yi · x ′i β

))︸ ︷︷ ︸
binomial cross-entropy loss
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Logistic Regression

# generate data
require(sigmoid)
n <- 1000
x <- rnorm(n)
p <- sigmoid(x) # true beta = 1
y <- rbinom(n,1,p) # y = {0,1} with probability p
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Logistic Regression

require(AER)
fit <- glm(y ~ x,family=binomial)
coeftest(fit)

##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.109388 0.069492 -1.5741 0.1155
## x 0.989909 0.083548 11.8484 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Logistic Regression

##################################
## Maximum Likelihood Estimation #
##################################
# We can obtain the solution by manually defining
# the negative log likelihood function and minimizing it

# negative log likelihood function
nll <- function(beta){

h <- sigmoid(x*beta)
nll <- -sum((y*log(h)) + ((1-y)*log(1-h)))

}

# perform optimization
betahat <- optim(c(0),nll)$par
print(betahat)

## [1] 0.9867188
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Logistic Regression

#####################
## Gradient Descent #
#####################
# We can manually optimize by gradient descent

# cost function (= nll)
cost <- function(X,y,beta){

N <- length(y)
h <- sigmoid(X%*%beta)
cost <- -sum((y*log(h)) + ((1-y)*log(1-h)))/N

}

# gradient function
grad <- function(X,y,beta){

N <- length(y)
h <- sigmoid(X%*%beta)
grad = (t(X)%*%(h-y))/N

}
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Logistic Regression

# Gradient descent algorithm
## eta: learning rate
## niter: number of iterations
gradientDescent <- function(X,y,beta0,eta,niter){

beta <- beta0
cost_hist <- rep(0,niter)
beta_hist <- list(niter)
for (i in 1:niter){

beta_hist[[i]] <- beta
cost_hist[i] <- cost(X,y,beta)
beta <- beta - eta*grad(X,y,beta) # update

}
result <- list("beta"=beta,"cost_hist"=cost_hist,"beta_hist"=beta_hist)
return(result)

}
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Logistic Regression

# estimation
## initial guess: 0; learning rate: 0.1; iteration: 500
X <- cbind(x) # make x column vector
result <- gradientDescent(X,y,0,0.1,500)
print(result$beta)

## [,1]
## x 0.9858559
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Logistic Regression

Given an estimated logistic regression model, at any data point x0, we
classify y0 to be

ŷ0 =

1 if p̂ (y0 = 1| x0) = σ
(
x ′0β̂

)
> 1

2

0 o.w.

Note that this is equivalent to the decision rule:

ŷ0 =

1 if log p̂( y0=1|x0)
p̂( y0=0|x0) = x ′0β̂ > 0

0 o.w.

, i.e., logistic regression yields the decision boundary: x ′β̂ = 09.

9For this reason, logistic regression is considered a linear classification model.
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Income and Voting

logitfit <- glm(vote ~ income, family=binomial)
coeftest(logitfit)

##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.08565 0.86061 -5.9093 3.435e-09 ***
## income 14.53879 2.24278 6.4825 9.023e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Income and Voting

To predict vote at income = 0.5:

x0 <- data.frame(income=.5)
p_hat <- predict(logitfit,x0,type="response")
p_hat

## 1
## 0.8987804

vote_hat <- as.numeric(p_hat>.5)
vote_hat

## [1] 1
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Income and Voting
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Linear vs. Logistic Regression

Both linear and logistic regression can be thought of as belonging to a
general approach that models a score function δj (x)10 for each class j
and classify y to be y = arg max

j
{δj (x)}.

Linear regression:
{
δ0 (x) = 1− x ′β
δ1 (x) = x ′β

Logistic regression:
{
δ0 (x) = 1− σ (x ′β)
δ1 (x) = σ (x ′β)

Decision boundary: {x : δ0 (x) = δ1 (x)}

The score functions for logistic regression have probabilistic interpretations
as models of Pr (y = j |x).

10Also called discriminant function.
© Jiaming Mao



Linear vs. Logistic Regression

Compared to logistic regression, linear regression can be less robust
due to the L2 loss function that it uses.

When estimating (1) using least squares, the method seeks to find β̂
such that each x ′i β̂ is as close to yi as possible, even though all we
need is for I

(
x ′i β̂ > 1

2

)
to be the same as yi .

In particular, the L2 loss penalizes cases in which yi = 1 and x ′i β̂ � 1,
or yi = 0 and x ′i β̂ � 0, i.e. the loss function penalizes predictions
that are “too correct”.
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Linear vs. Logistic Regression

Data from two classes are denoted by red crosses and blue circles, with decision
boundaries found by least squares (magenta) and logistic regression (green).
Least squares can be highly sensitive to outliers, unlike logistic regression.

© Jiaming Mao



Loss Functions for Classification

Let y be coded as {−1, 1}. The logistic regression can also be thought of
as a linear model H = {h (x) = x ′β} that minimizes an in-sample error
based on the binomial cross-entropy loss11:

`CE (h (x) , y) = log (1 + exp (−y · h (x))) (7)

Least squares linear regression, on the other hand, minimizes the L2 loss:

`L2 (h (x) , y) = (y − h (x))2 = (y · h (x)− 1)2 (8)

11See page 16
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Loss Functions for Classification

Now consider a linear model for classification that minimizes the empirical
misclassification rate:

Ein = 1
N

N∑
i=1
I
(
`01 (h (xi ) , yi )

)
(9)

, where `01 is the 0− 1 loss:

`01 (h (x) , y) = I (y 6= sign (h (x))) = I (y · h (x) < 0) (10)

Such a model is called the perceptron12,13.

Minimizing (9) is NP hard14.

12With {−1, 1} target, the perceptron model could also be written as
H = {h (x) = sign (x ′β)} that minimizes the loss function I (y 6= (h (x))).

13We will formally discuss the perceptron model when we introduce neural networks.
14Meaning: there is no efficient algorithm to solve the problem.
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Loss Functions for Classification

The loss functions (7), (8), and (10) are all functions of the margin
y · h (x).

Positive margin: correct classification ,. Negative margin: incorrect
classification /. Decision boundary: h (x) = 0.

The goal of a classification algorithm should be to produce positive
margins as frequently as possible.

Both `01 and `CE are decreasing functions of the margin. `CE can be
viewed as a monotone continuous approximation to `01.

`L2, however, is not a decreasing function of the margin. It penalizes
observations with large positive margins and hence is not a suitable
loss function for classification.
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Loss Functions for Classification
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Logistic Regression for Aggregate Outcomes

In addition to binary classification, logistic regression is suitable for
regression problems where the response variable is the sum of individual
binary outcomes.

The model is15:

yi ∼ Binomial (ni , πi ) (11)
πi = σ

(
x ′i β
)

15The logistic model for binary classification can be similarly written as:

yi ∼ Binomial
(
1, σ

(
x ′i β
))

= Bernoulli
(
σ
(
x ′i β
))
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Logistic Regression for Aggregate Outcomes

The log likelihood function is:

logL (β) =
N∑

i=1
log
((

ni
yi

)
[πi (β)]yi [1− πi (β)]ni−yi

)

∝
N∑

i=1
[yi log πi (β) + (ni − yi ) log (1− πi (β))]

=
N∑

i=1

[
yi log σ

(
x ′i β
)

+ (ni − yi ) log
(
1− σ

(
x ′i β
))]
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Generalized Linear Models

The logistic regression model belongs to a class of generalized linear
models (GLM). A GLM assumes that the response variable y comes from
a known exponential family with mean µ, and

g (µ) = x ′β

, where g (.) is a monotonic function called the link function.
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Generalized Linear Models

Normal linear model: Normal distribution with the identity link

y ∼ N
(
µ, σ2

)
µ = x ′β

Logistic model: Bernoulli/Binomial distribution with the logit link

y ∼ Binomial (n, π)

log
(

π

1− π

)
= x ′β

Poisson model: Poisson distribution with the log link

y ∼ Poisson (µ)
logµ = x ′β
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Dose Response

Five groups of animals were exposed to a dangerous substance in varying
concentrations. Let ni be the number of animals and yi the number that
died in group i .

How to model yi as a function of log conc?
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Dose Response

#######################
# Logistic Regression #
#######################
require(AER)
y <- c(0,1,4,6,6)
n <- c(6,6,6,6,6)
logconc <- c(-5,-4,-3,-2,-1)
logitfit <- glm(cbind(y,n-y) ~ logconc, family=binomial)
coeftest(logitfit)

##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.5868 3.7067 2.5864 0.009699 **
## logconc 2.8792 1.1023 2.6121 0.008999 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Dose Response

Let pi = yi / ni be the observed proportion that died in group i . Can we
run linear regression of pi on log conc? i.e.,

pi = x ′i β + ei

Yes, but the linear model may generate predictions outside the range of
[0, 1] ...
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Dose Response

Better: let
zi
.= log pi

1− pi

and regress
zi = x ′i β + ei (12)

When ni is large, model (12) → the logistic model (11).
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Dose Response

######################################
# Linear Regression: p = x'*beta + e #
######################################
p <- y/n
lsfit1 <- lm(p ~ logconc)
coeftest(lsfit1)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.416667 0.153055 9.2559 0.002668 **
## logconc 0.283333 0.046148 6.1397 0.008690 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Dose Response
###########################################
# Linear Regression with Target Transform #
# z = x'*beta + e, where z = log(p/(1-p)) #
###########################################
# Since some p=0 and some p=1, we add a small number eps to p=0,
# and subtract eps from p=1, to avoid log(p/(1-p)) being undefined.
# Note: when n is small, regression results are highly sensitive to eps
eps <- 1e-4
p[p==0] <- p[p==0] + eps
p[p==1] <- p[p==1] - eps
z <- log(p/(1-p))
lsfit2 <- lm(z ~ logconc)
coeftest(lsfit2)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.95698 2.47044 6.4592 0.007528 **
## logconc 4.76606 0.74487 6.3986 0.007732 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1© Jiaming Mao



Dose Response
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Cropland

Data on 3144 counties, including agricultural land (fields) available in each
county, the number of fields that are being cultivated, and the annual
average temperature of each county.
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Cropland

cropland <- read.csv("cropland.txt")
attach(cropland)
head(cropland)

## temperature fields cultivated percentCultivated
## 1 13.18475 63 49 0.7777778
## 2 12.35680 165 147 0.8909091
## 3 17.57882 38 30 0.7894737
## 4 20.86867 152 95 0.6250000
## 5 13.88084 88 69 0.7840909
## 6 17.18088 191 141 0.7382199
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Cropland

#######################
# Logistic Regression #
#######################
require(AER)
logitfit <- glm(cbind(cultivated, fields-cultivated) ~ temperature,

family=binomial)
coeftest(logitfit)

##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.266957 0.017392 245.34 < 2.2e-16 ***
## temperature -0.189233 0.000990 -191.14 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Cropland

#####################
# Linear Regression #
#####################
lsfit <- lm(percentCultivated ~ temperature)
coeftest(lsfit)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.28838143 0.00383395 336.05 < 2.2e-16 ***
## temperature -0.03349385 0.00023385 -143.23 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Cropland

###########################################
# Linear Regression with Target Transform #
###########################################
p <- percentCultivated
eps <- 1e-4
p[p==1] <- p[p==1] - eps
lsfit2 <- lm(log(p/(1-p)) ~ temperature)
coeftest(lsfit2)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.5086192 0.0430642 104.695 < 2.2e-16 ***
## temperature -0.2012857 0.0026266 -76.632 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

© Jiaming Mao



Cropland
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Classification Error

A binary classifier can make two types of errors:

False positive rate (FPR): Pr ( ŷ = 1| y = 0)
False negative rate (FNR): Pr ( ŷ = 0| y = 1)

The sensitivity of the classifier is Pr ( ŷ = 1| y = 1) and the specificity of
the classifier is Pr ( ŷ = 0| y = 0).

© Jiaming Mao



Classification Error
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Credit Card Default
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Credit Card Default

require(ISLR) # contains the data set 'Default'
attach(Default)
Default <- Default[,-2]
head(Default)

## default balance income
## 1 No 729.5265 44361.625
## 2 No 817.1804 12106.135
## 3 No 1073.5492 31767.139
## 4 No 529.2506 35704.494
## 5 No 785.6559 38463.496
## 6 No 919.5885 7491.559
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Credit Card Default

require(AER)
logitfit <- glm(default ~., data=Default, family=binomial)
coeftest(logitfit)

##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.1540e+01 4.3476e-01 -26.5447 < 2.2e-16 ***
## balance 5.6471e-03 2.2737e-04 24.8363 < 2.2e-16 ***
## income 2.0809e-05 4.9852e-06 4.1742 2.991e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Credit Card Default

cutoff <- .5
logit.p <- logitfit$fit
logit.y <- as.factor(logit.p > cutoff)
levels(logit.y) <- c("No","Yes")
t <- table(logit.y,default,dnn=c("predicted default","true default"))
t

## true default
## predicted default No Yes
## No 9629 225
## Yes 38 108

prop.table(t,2)

## true default
## predicted default No Yes
## No 0.996069101 0.675675676
## Yes 0.003930899 0.324324324
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Credit Card Default

Overall error rate: (225 + 38) /10, 000 = 2.63%
FPR: 0.39%. Specificity: 99.61%
FNR: 67.57%. Sensitivity: 32.43%

Note that only 333/10, 000 = 3.33% individuals defaulted in the data.
Hence a simple but useless null classifier that always predicts “No”
will result in an error rate of 3.33%.

From the perspective of a credit card company that is trying to
identify high-risk individuals, the FNR – not the overall error rate – is
what’s important.

I Incorrectly classifying an individual who will not default, though still to
be avoided, is less problematic.
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Credit Card Default

In binary classification, the Bayes classifier assigns ŷ = 1 if
p (y = 1|x) > 0.5 – here 0.5 is used as a threshold in order to classify
ŷ = 1 based on p (y = 1|x).

Recall that we can use different loss functions16 to control which type
of error we want to minimize: the overall error rate, FPR, or FNR.
This is equivalent to changing the threshold for classifying ŷ = 1 .

If we are more concerned about FNR, then we can lower this
threshold. For example, if we use 0.1 as the threshold, then we assign
ŷ = 1 if p (y = 1|x) > 0.117.

16other than the 0− 1 loss which gives us the Bayes classifier.
17This is equivalent to using the loss function: ` (y , ŷ) = 9 if (y , ŷ) = (1, 0),

` (y , ŷ) = 1 if (y , ŷ) = (0, 1), and ` (y , ŷ) = 0 otherwise.
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Credit Card Default

cutoff <- .1
logit.y <- as.factor(logit.p > cutoff)
levels(logit.y) <- c("No","Yes")
t <- table(logit.y,default,dnn=c("predicted default","true default"))
t

## true default
## predicted default No Yes
## No 9105 90
## Yes 562 243

prop.table(t,2)

## true default
## predicted default No Yes
## No 0.94186407 0.27027027
## Yes 0.05813593 0.72972973
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Credit Card Default

Overall error rate: (90 + 562) /10, 000 = 6.52%
FPR: 5.81%. Specificity: 94.19%
FNR: 27.03%. Sensitivity: 72.97%
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Credit Card Default

cutoff <- .01
logit.y <- as.factor(logit.p > cutoff)
levels(logit.y) <- c("No","Yes")
t <- table(logit.y,default,dnn=c("predicted default","true default"))
t

## true default
## predicted default No Yes
## No 7134 10
## Yes 2533 323

prop.table(t,2)

## true default
## predicted default No Yes
## No 0.73797455 0.03003003
## Yes 0.26202545 0.96996997

© Jiaming Mao



Credit Card Default

Overall error rate: (10 + 2533) /10, 000 = 25.43%
FPR: 26.20%. Specificity: 74.80%
FNR: 3.00%. Sensitivity: 97.00%
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Credit Card Default
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The ROC Curve

The ROC curve displays sensitivity (1−FNR) vs 1−specificity (FPR)
for all possible thresholds.

The overall performance of a classifier, summarized over all possible
thresholds, is given by the area under the curve (AUC).

An ideal ROC curve hugs the top left corner (high sensitivity, high
specificity): the larger the AUC the better the classifier.

ROC curves are useful for comparing different classifiers18.

18Note that the error rates we have calculated so far are training errors. More
rigorously, error rates should be calculated and compared on a test data set.
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Credit Card Default
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Similarity-Based Methods

One way to classify data is to assign a new input the class of the
most similar input(s) in the data. This is called the nearest neighbor
method.

The nearest neighbor method is a similarity-based method. These
methods are model free and hence nonparametric.
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KNN

Given an input x , the K-nearest neighbors (KNN) classifier finds
the K points that are closest in distance to x19, denoted by
NK (x) =

{
x(1), . . . , x(K)

}
, and then classify using majority vote: let

y be the most common class among
{
y(1), . . . , y(K)

}
20.

Equivalently, the KNN classifier can be thought of as first estimating

p̂ (y = j |x) = 1
K

∑
i∈NK (x)

I (yi = j)

, where y ∈ {1, . . . , J}, and then applying the Bayes classifier.

19To do this, we need a distance measure, or similarity measure. For real-valued
inputs, the common choice is to use the Euclidean distance: d (x , x ′) = ‖x − x ′‖.

20Ties are broken at random.
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Credit Card Default

#######
# KNN #
#######
# To perform KNN classification, we first standardize the x variables
# so that all variables have mean zero and standard deviation one.
# Furthermore, let's split our sample into a training data set
# and a test data set, fit the model on the training data,
# and test its performance on the test data.

# standardization
s.balance <- scale(balance)
s.income <- scale(income)
SX <- data.frame(s.balance,s.income) # standardized x variables

# create training and test data
test <- sample(1:nrow(Default),2000) # sample 2000 random indices
TR.SX <- SX[-test,] # training X
TE.SX <- SX[test,] # test X
TR.y <- default[-test] # training y
TE.y <- default[test] # test y
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Credit Card Default

require(class)
require(gmodels)
K <- 5 # K value
knn.pred <- knn(TR.SX,TE.SX,TR.y,k=K,prob=TRUE)
r <- table(knn.pred,TE.y,dnn=c("predicted default","true default"))
print(r)

## true default
## predicted default No Yes
## No 1918 35
## Yes 22 25

err <- (r[2,1] + r[1,2])/sum(r) # overall error rate
fpr <- r[2,1]/(r[1,1] + r[2,1]) # false positive rate
fnr <- r[1,2]/(r[1,2] + r[2,2]) # false negative rate
c(err,fpr,fnr)

## [1] 0.02850000 0.01134021 0.58333333
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KNN

In choosing K , we face a bias-variance tradeoff:

With K = 1, the KNN training error rate is 0. Bias is low and
variance is high.

As K grows, the method becomes less flexible and produces a decision
boundary that is closer to linear, with lower variance and higher bias.
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KNN
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KNN: K=1 KNN: K=100

Black curve: KNN decision boundary. Purple curve: Bayes decision boundary
(decision boundary based on the Bayes classifier and the true p (y |x))
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KNN
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Parametric vs. Nonparametric Methods

KNN is a nonparametric (model-free) method. In general, these
methods can work well for prediction in a wide variety of situations,
since they don’t make any real assumptions.

The downside is that they are essentially a black box and lack
interpretability. They are also more computationally expensive since
they typically need to store the entire data and use them whenever
predicting on a new point.

I In contrast, parametric methods summarize the data with a fixed set of
parameters, which are sufficient for prediction21.

In addition, KNN suffers from the curse of dimensionality: given N,
when p is large22, data become relatively sparse. In high dimensions,
the neighborhood represented by the K nearest points may not be
local.

21Fundamentally, a parametric model is a compression of data.
22p being the dimension of the input space. © Jiaming Mao



Multiclass Classification

For multiclass problems, let y be coded as {1, . . . , J}. The methods of
binary classification extends naturally to the multiclass setting.

Let δj (x) be the score function for class j . For linear regression,
δj (x) = x ′βj . Define y j = I (y = j). Then we have the following J
regression equations:

y j = x ′βj + ej , j = 1, . . . , J (13)

Estimating (13) ⇒
{
β̂j
}J

j=1
. Given a data point x0, we classify y0 to be:

y0 = arg max
j

{
x ′0β̂j

}
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Linear Regression

In addition to a lack of robustness, the linear regression approach can
have serious problems dealing with multiclass problems (J ≥ 3).
Classes can be masked by others – particularly when J is large and p
is small.

This is not surprising: recall that the least squares estimate
corresponds to the estimate of a normal linear model. Binary targets
like y j , however, clearly have a distribution that is far from Gaussian.
Hence we obtain better classification results by adopting more
appropriate probabilistic models.
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Linear Regression

linear regression decision boundary the three fitted regression lines

For this particular 3-class problem, the decision boundaries produced by linear
regression between 1 and 2 and between 2 and 3 are the same, so we would never
predict class 2. This problem is called masking. Projecting onto the line joining
the three class centroids shows why this happened.
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Linear Regression

Left: linear regression; Right: logistic regression
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Multinomial Logistic Regression

The multinomial logistic regression model assumes

Pr (y = j |x) = exp (x ′βj)∑J
`=1 exp (x ′β`)

(14)

(14) ⇒

ln Pr (y = j |x)
Pr (y = k|x) = x ′ (βj − βk)

The function σj (z) ≡ exp(zj )∑J
`=1 exp(z`)

23 is called the softmax function –
a generalization of the sigmoid.

23z = (z1, . . . , zJ ).
© Jiaming Mao



Multinomial Logistic Regression

Note that since
∑J

j=1 Pr (y = j |x) = 1, we only need to estimate
Pr (y = j |x) for J − 1 classes of y . Therefore, we can choose one class of
y , say y = 1, to be the reference level and normalize β1 to 0.

This implies

Pr (y = 1|x) = 1
1 +

∑J
`=2 exp (x ′β`)

Pr (y = j |x) = exp (x ′βj)
1 +

∑J
`=2 exp (x ′β`)

, j = 2, . . . , J

, and
ln Pr (y = j |x)

Pr (y = 1|x) = x ′βj

, i.e., exp (x ′βj) becomes the probability of y = j relative to y = 1.
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Mode of Transportation

Modes of transportation: {bus, car, subway}
Individual variables: log (annual) income, distance to work (from 0 to 1)

transport <- read.csv("Transport.txt")
head(transport,3)

## LogIncome DistanceToWork ModeOfTransportation
## 1 11.777090 0.6454524 car
## 2 11.130492 0.5135208 subway
## 3 9.090856 0.8144265 subway

loginc <- transport$LogIncome
distance <- transport$DistanceToWork
y <- transport$ModeOfTransportation

© Jiaming Mao



Mode of Transportation

prop.table(table(y))

## y
## bus car subway
## 0.22 0.31 0.47

income <- exp(loginc)
cbind(mean(income[y=="bus"]),mean(income[y=="car"]),
mean(income[y=="subway"]))

## [,1] [,2] [,3]
## [1,] 42792 70006.83 56048.95

cbind(mean(distance[y=="bus"]),mean(distance[y=="car"]),
mean(distance[y=="subway"]))

## [,1] [,2] [,3]
## [1,] 0.3032989 0.5149095 0.580446
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Mode of Transportation
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Mode of Transportation
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Mode of Transportation
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Mode of Transportation

require(nnet)
logitfit <- multinom(y ~ loginc + distance)

require(AER)
coeftest(logitfit)

##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## car:(Intercept) -18.60894 1.85544 -10.0294 < 2.2e-16 ***
## car:loginc 1.64705 0.16969 9.7061 < 2.2e-16 ***
## car:distance 2.93996 0.37602 7.8187 5.339e-15 ***
## subway:(Intercept) -8.55927 1.45952 -5.8645 4.506e-09 ***
## subway:loginc 0.72359 0.13545 5.3421 9.189e-08 ***
## subway:distance 3.75524 0.35014 10.7248 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Mode of Transportation

Estimation results: (reference level: bus)

log p̂ (car|x)
p̂ (bus|x) = −18.61 + 1.65× loginc + 2.94× distance (15)

= x ′β̂car

log p̂ (subway|x)
p̂ (bus|x) = −8.56 + 0.72× loginc + 3.76× distance

= x ′β̂subway

, where x = [1, loginc, distance]′, β̂car = [−18.61, 1.65, 2.94]′, and
β̂subway = [−8.56, 0.72, 3.76]′.
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Mode of Transportation

(15) ⇒

p̂ (bus|x) = 1
1 + exp

(
x ′β̂car

)
+ exp

(
x ′β̂subway

) (16)

p̂ (car|x) =
exp

(
x ′β̂car

)
1 + exp

(
x ′β̂car

)
+ exp

(
x ′β̂subway

)
p̂ (subway|x) =

exp
(
x ′β̂subway

)
1 + exp

(
x ′β̂car

)
+ exp

(
x ′β̂subway

)
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Mode of Transportation

Decision boundary between bus and car: x ′β̂car = 0

Decision boundary between bus and subway: x ′β̂subway = 0

Decision boundary between car and subway: x ′
(
β̂subway − β̂car

)
= 0
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Mode of Transportation
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Mode of Transportation

Contour plot of −max
(
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Mode of Transportation
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Mode of Transportation
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Mode of Transportation

logit.yhat <- predict(logitfit)
t <- table(logit.yhat,y,dnn=c("predicted","true"))
t

## true
## predicted bus car subway
## bus 101 41 55
## car 33 78 72
## subway 86 191 343

1 - sum(diag(t))/sum(t) # training error rate

## [1] 0.478
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Mode of Transportation
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Mode of Transportation
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Mode of Transportation

Now suppose there is no subway, what will be the share of bus and car as
mode of transportation among the commuters?

From (15), we know that:

log p̂ (car|x)
p̂ (bus|x) = −18.61 + 1.65× loginc + 2.94× distance

The decision boundary between bus and car does not change whether
there is subway or not.
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Mode of Transportation

require(ramify)
logit.phat <- predict(logitfit,type="probs")
counterfactual.p <- logit.phat[,c(1,2)] # no subway
counterfactual.p <- counterfactual.p/rowSums(counterfactual.p)
counterfactual.y <- as.factor(argmax(counterfactual.p))
levels(counterfactual.y) <- c("bus","car")
table(counterfactual.y,logit.yhat)

## logit.yhat
## counterfactual.y bus car subway
## bus 197 0 116
## car 0 183 504
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Mode of Transportation
Counterfactual Prediction
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Calculating Market Share

Assume the observed data D = {(x1, y1) , . . . , (xN , yN)} is a random
sample drawn from the underlying population. Then the “market share” of
alternative j – the share of individuals in the population that choose j – is

Pr (yi = j) =
∫

Pr (yi = j | xi ) f (xi ) dxi

≈ 1
N

N∑
i=1

Pr (yi = j | xi )

, i.e., we can average individual conditional choice probabilities to get an
estimate of the market share of each alternative in the population.

© Jiaming Mao



Mode of Transportation

# note: average choice probabilities estimated by logistic regression
# on the training data always match the observed shares of choices
# (if intercepts are included in the model)

marketShare.subway <- colMeans(logit.phat)
marketShare.subway

## bus car subway
## 0.2199985 0.3100005 0.4700010

marketShare.nosubway <- colMeans(counterfactual.p)
marketShare.nosubway

## bus car
## 0.3822821 0.6177179
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Mode of Transportation

predicted share with subway without subway

bus 22% 38%

car 31% 62%

Is this reasonable? Many people use subway not because of income or
distance considerations, but because they cannot drive or they strongly
prefer public transportation. For these people, if there is no subway, they
would mostly switch to bus rather than car...
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Independence of Irrelevant Alternatives (IIA)

For the multinomial logistic regression model,

log Pr (y = j |x)
Pr (y = k|x) = x ′ (βj − βk)

for any two classes j and k.

The probability of y = j relative to y = k depends only on x ′βj and x ′βk –
in particular, it is not affected by the existence and the properties of other
classes.

This is called the independence of irrelevant alternatives (IIA)
property.
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Independence of Irrelevant Alternatives (IIA)
As an illustration of the IIA property (and why it can be undesirable in
some cases), consider a more extreme example of the transportation
problem:

Blue bus, Red bus
A route is currently served by a blue bus. People traveling along this route
can either take the blue bus or drive themselves.

Suppose we observe each traveler’s transportation choice, but do not
observe any other characteristics. Our logistic regression model is then
simply:

log Pr (blue bus|x)
Pr (car|x) = β0 (17)

, where x = 1. If currently 40% of the travelers take the blue bus, while
60% drive, then β̂0 = log

(
2
3

)
.
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Independence of Irrelevant Alternatives (IIA)

Blue bus, Red bus
Note that (17) predicts the relative share of blue bus riders to car drivers
to be 2 : 3 regardless of what other transportation options are available.

What if the government now decides to introduce a red bus to this route,
which is identical to the blue bus except the color of the paint?

Suppose people do not care about color, so that Pr(red bus)
Pr(blue bus) = 1, then the

model would predict the rider shares to be
Pr (blue bus) : Pr (red bus) : Pr (car) = 2 : 2 : 3
⇒ Pr (blue bus) = Pr (red bus) = 28.57%,Pr (car) = 42.86% .

This is clearly unreasonable, since we should expect
Pr (blue bus) = Pr (red bus) = 20%,Pr (car) = 60%, i.e., the bus riders
would be split between the blue bus and the red bus, while the car drivers
continue to drive.
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Independence of Irrelevant Alternatives (IIA)

The problem is due to unobserved variables. Suppose the true model is:

Pr (y = j |x , z) = exp (x ′βj + z ′γj)∑
` exp (x ′β` + z ′γ`)

, where z is unobserved24. Then

Pr (y = j |x) =
∫ exp (x ′βj + zγj)∑

` exp (x ′β` + zγ`)
f (z) dz

In this case, log Pr(y=j|x)
Pr(y=k|x) is in general no longer a function of x ′βj and

x ′βk only, hence the IIA no longer holds.

24e.g., preference for public transportation.
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Multinomial Logistic Regression for Aggregate Outcomes

As in the binary case, multinomial logistic regression can be used for
problems where the response variable is the sum of individual discrete
outcomes.

The model is:
yi ∼ Multinomial (ni , πi ) (18)

, where πi = (πi1, . . . , πiJ),
∑J

j=1 πij = 1, and

πij = exp (x ′i βj)∑J
`=1 exp (x ′i β`)

When ni = 1, (18) becomes the multinomial logistic model for
multiclass classification.
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Crop Choice

Crops: {corn, wheat, rice}

3144 counties, data on each county include number of agricultural land
(fields) available, number of fields that are being cultivated for each crop,
average temperature, and average monthly rainfall.

cropchoice <- read.csv("cropchoice.txt")
attach(cropchoice)
head(cropchoice,5)

## temperature rainfall fields noncrop corn wheat rice
## 1 13.18475 75.26666 63 8 31 17 7
## 2 12.35680 102.37572 165 7 100 30 28
## 3 17.57882 101.61363 38 1 26 3 8
## 4 20.86867 64.35788 152 45 78 12 17
## 5 13.88084 107.54101 88 4 54 15 15
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Distribution of percentage cultivated
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Crop Choice

require(nnet)
crops <- cbind(noncrop,corn,wheat,rice)
logitfit <- multinom(crops ~ temperature + rainfall)

require(AER)
coeftest(logitfit)

##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## corn:(Intercept) 0.63814409 0.02120175 30.099 < 2.2e-16 ***
## corn:temperature -0.12877826 0.00128084 -100.542 < 2.2e-16 ***
## corn:rainfall 0.03864995 0.00022141 174.564 < 2.2e-16 ***
## wheat:(Intercept) 2.57310771 0.02427508 105.998 < 2.2e-16 ***
## wheat:temperature -0.25688133 0.00156614 -164.022 < 2.2e-16 ***
## wheat:rainfall 0.02567228 0.00025031 102.563 < 2.2e-16 ***
## rice:(Intercept) -3.26197982 0.02843702 -114.709 < 2.2e-16 ***
## rice:temperature -0.02241833 0.00155758 -14.393 < 2.2e-16 ***
## rice:rainfall 0.05132472 0.00026986 190.187 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Crop Choice

Can we run linear regression instead?

Yes. Let yij be the number of fields used for crop j in county i , with j = 1
denoting no cultivated crops. Let ni be the number of fields in county i .
Let pij = yij/ ni and zij = log pij − log pi1. Then we can estimate the
following J − 1 linear regression equations:

zi = x ′i βj + ej , j = 2, . . . , J (19)

, where xi = [1, temperaturei , rainfalli ].

When ni is large, (19) → the multinomial logistic model (18).
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Crop Choice

p <- crops/fields
eps <- 1e-4
p[p==0] <- p[p==0] + eps
z.corn <- log(p[,2]) - log(p[,1])
lsfit.corn <- lm(z.corn ~ temperature + rainfall)
coeftest(lsfit.corn)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.64378418 0.06253041 10.296 < 2.2e-16 ***
## temperature -0.14078836 0.00371590 -37.888 < 2.2e-16 ***
## rainfall 0.04268634 0.00059017 72.329 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Crop Choice

z.wheat <- log(p[,3]) - log(p[,1])
lsfit.wheat <- lm(z.wheat ~ temperature + rainfall)
coeftest(lsfit.wheat)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.85626917 0.07518212 37.991 < 2.2e-16 ***
## temperature -0.28943989 0.00446774 -64.784 < 2.2e-16 ***
## rainfall 0.02933530 0.00070958 41.342 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Crop Choice

z.rice <- log(p[,4]) - log(p[,1])
lsfit.rice <- lm(z.rice ~ temperature + rainfall)
coeftest(lsfit.rice)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.68724544 0.07945515 -46.4066 < 2.2e-16 ***
## temperature -0.02622848 0.00472166 -5.5549 3.009e-08 ***
## rainfall 0.05834856 0.00074991 77.8074 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Multinomial Logistic Fit
© Jiaming Mao



Discrete Choice Models

In the econometrics literature, the response variables in classification
problems are often individual choices.

I Here “individuals” can refer to people, firms, governments – any unit of
decision making.

Discrete choice models are a class of econometric models of how
individuals make choices.

I These models can be considered structural models of decision making
based on utility maximization.
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The Random Utility Maximization (RUM) Framework

Individual i faces a choice among J alternatives.

The utility associated with alternative j is Uij .

The individual chooses the alternative that generates the highest
utility, i.e., let yi ∈ {1, . . . , J} denote the choice the individual makes,
then

yi = arg max
j∈{1,...,J}

{Uij} (20)
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The Random Utility Maximization (RUM) Framework

We do not observe Uij . Instead, we observe (xij , yi ), where xij are
characteristics associated with individual i and alternative j .

In general, xij may contain two types of variables: si and zij

si : individual-specific variables (e.g., income)

zij : alternative-specific variables (e.g., price)25

25If zij is the same for all i , then we can denote it by zj .
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The Random Utility Maximization (RUM) Framework

Since we observe xij but not Uij , we can write:

Uij = fj (xij) + eij (21)

, where eij captures unobserved factors26 that influence Uij
27.

Let ei = (ei1, . . . , eiJ). We assume

ei ∼i .i .d . Fe (.)

Different specifications of fj (xij) and Fe (.) lead to different discrete
choice models.

26Unobserved to us not to the individual.
27One can think of fj (xij ) as the systematic component of a decision maker’s utility

and eij as the idiosyncratic component.
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The Random Utility Maximization (RUM) Framework

Let xi = {xij}Jj=1. (20) and (21) ⇒

Pr (yi = j | xi ) = Pr (Uij > Ui` ∀` 6= j | xi )
= Pr ( fj (xi ) + eij > f` (xi ) + ei` ∀` 6= j | xi )

=
∫
I (ei` − eij < fj (xi )− f` (xi ) ∀` 6= j) dFe (ei )

, i.e., once we place assumptions on fj (xij) and Fe (.), we can calculate
Pr (yi = j | xi ), which is called the conditional choice probability (CCP)
in discrete choice models28.

28The RUM framework assumes that the individual knows her Uij , so that her decision
is deterministic. However, since we do not observe Uij , we can only calculate the
probability of her choosing each alternative conditional on the variables we observe.
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The Random Utility Maximization (RUM) Framework

Discrete choice models derived from the RUM framework has the following
features29:

1 The absolute level of utility is irrelevant. Only differences in utility
matter.

2 The overall scale of utility is irrelevant.

29Therefore, we will not be able to learn the level of utility associated with different
alternatives, only the scaled differences among them.
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Only Differences in Utility Matter

The absolute level of utility is irrelevant. If a constant is added to the
utility of all alternatives, then the alternative with the highest utility does
not change.

The following models are equivalent:

Model 1: Uij = fj (xij) + eij

Model 2: Uij = α + fj (xij) + eij

, where α is any constant.
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Only Differences in Utility Matter

Example
Consider a binary choice problem: y ∈ {A,B}. The following models are
equivalent:

Model 1

UiA = µA + eiA, eiA ∼ N
(
0, σ2

A

)
UiB = µB + eiB, eiB ∼ N

(
0, σ2

B

)
Model 2

UiA = 0

UiB = ∆µB + ∆eiB, ∆eiB ∼ N
(
0, σ2

A + σ2
B

)
, where ∆µB = µB − µA and ∆eiB = eiB − eiA.
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Only Differences in Utility Matter
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The Overall Scale of Utility is Irrelevant

The overall scale of utility is irrelevant. Multiplying the utility of all
alternatives does not change individual choice: the alternative with the
highest utility is the same irrespective of how utility is scaled.

The following models are equivalent:

Model 1: Uij = fj (xij) + eij

Model 2: Uij = λfj (xij) + λeij

, where λ is any positive constant.
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The Overall Scale of Utility is Irrelevant

Example (cont.)
The following models are equivalent to Model 1 and Model 2:

Model 3

UiA = µ̃A + ẽiA, ẽiA ∼ N
(
0, σ2

A
σ2

A + σ2
B

)

UiB = µ̃B + ẽiB, ẽiB ∼ N
(
0, σ2

A
σ2

A + σ2
B

)

, where µ̃j = λµj , ẽij = λeij , and λ = 1
/√

σ2
A + σ2

B .
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The Overall Scale of Utility is Irrelevant

Example (cont.)

Model 4

UiA = 0
UiB = ∆µ̃B + ∆ẽiB, ∆ẽiB ∼ N (0, 1)

, where ∆µ̃B = µ̃B − µ̃A and ∆ẽiB = ẽiB − ẽiA.

Therefore, in Model 1, the parameters µA, µB, σA, σB are not separately
identifiable, because an infinite number of models (corresponding to
different values of α and γ) are consistent with the same choice behavior.

To estimate the model, we need to normalize the level and scale of utility.
What we can estimate as a result is ∆µ̃B = λ (µB − µA) – the scaled
difference between µA and µB.
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The Overall Scale of Utility is Irrelevant
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Probit

For j = 1, . . . , J ,

Uij = x ′ijβj + eij

, and

ei =

 ei1
...
eiJ

 ∼ N (0,Σ)
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Probit

For binary discrete choice problems, let y ∈ {A,B}. We have:

UiA = x ′iAβA + eiA (22)
UiB = x ′iBβB + eiB

, and

ei =
[

eiA
eiB

]
∼ N

(
0,
[
σ2

A σAB
. σ2

B

])
(23)

© Jiaming Mao



Probit

Note that (23) ⇒

eiA − eiB ∼ N
(
0, σ2

A + σ2
B − 2σAB

)
Normalizing (22) ⇒

UiA = 0
UiB = x ′iBβ̃B − x ′iAβ̃A + ∆ẽiB

, where, let λ = 1
/√

σ2
A + σ2

B − 2σAB , then β̃A = λβA, β̃B = λβB, and
∆ẽiB = λ (eiB − eiA) ∼ N (0, 1).
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Probit

30

30Here we have motivated probit using the RUM framework. However, probit can be
introduced as a purely statistical classification model just like the logistic model. For
binary classification with only individual-specific variables, the probit model is

Pr (y = 1|x) = Φ
(
x ′β
)

, where Φ is the CDF of N (0, 1).
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Probit

Example 1

UiA = αA + z ′AδA + eiA

UiB = αB + z ′BδB + eiB

Here z ′j δj and αj are both constants and hence cannot be separately
identified.

As long as there is an intercept term, alternative-specific variables zij
must vary with i in order to be identified.
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Probit

Example 2

UiA = αA + s ′iγ + eiA (24)
UiB = αB + s ′iγ + eiB

(24) ⇒
UiB − UiA = (αB − αA) + (eiB − eiA)

Since only difference in utility matters, γ cannot be identified.

The coefficients of individual-specific variables must be
alternative-specific in order to be identified.
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Probit

Example 3

UiA = αA + s ′iγA + eiA (25)
UiB = αB + s ′iγB + eiB

(25) ⇒

UiB − UiA = (αB − αA) + s ′i (γB − γA) + (eiB − eiA)

αA and αB cannot be separately identified.
γA and γB cannot be separately identified.
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Probit

Example 3

Normalization of the model:

1 normalize level

UiA = 0
UiB = ∆αB + s ′i ∆γB + ∆eiB

, where ∆αB = αB − αA, ∆γB = γB − γA, and ∆eiB = eiB − eiA.

2 normalize scale

UiA = 0
UiB = ∆α̃B + s ′i ∆γ̃B + ∆ẽiB

, where we divide ∆αB,∆λB, and ∆eiB by
√
σ2

A + σ2
B − 2σAB.
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Probit

Example 4

UiA = αA + s ′iγA + z ′iAδ + eiA (26)
UiB = αB + s ′iγB + z ′iBδ + eiB

UiA = αA + s ′iγA + z ′iAδA + eiA (27)
UiB = αB + s ′iγB + z ′iBδB + eiB

Here we can specify either z ′ijδ or z ′ijδj .

Alternative-specific variables can have either alternative-specific
coefficients or generic coefficients that do not change with
alternatives.
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Probit

Example 4

Normalizing (26) ⇒a

UiA = 0
UiB = ∆α̃B + s ′i ∆γ̃B + (ziB − ziA)′ δ̃ + ∆ẽiB

Normalizing (27) ⇒

UiA = 0

UiB = ∆α̃B + s ′i ∆γ̃B +
(
z ′iB δ̃B − z ′iAδ̃A

)
+ ∆ẽiB

aFor both, ∆α̃B ,∆γ̃B ,∆ẽiB are defined as before.
δ̃ = λδ, δ̃A = λδA, δ̃B = λδB , and λ = 1

/√
σ2

A + σ2
B − 2σAB .
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Probit

Simulation 1:

UiA = 5− 10si + eiA (28)
UiB = −5 + 10si + eiB

ei =
[

eiA
eiB

]
∼ N

([
1
−1

]
,

[
1 0
0 4

])

Normalizing (28) ⇒

UiA = 0

UiB = − 12√
5

+ 20√
5
si + εiB

= −5.37 + 8.94si + εiB

, where εiB = (eiB − eiA)/
√
5 ∼ N (0, 1).
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Probit

require(ramify)
n <- 1e3
s <- runif(n)
e1 <- rnorm(n,mean=1,sd=1)
e2 <- rnorm(n,mean=-1,sd=2)
u1 <- 5 - 10*s + e1
u2 <- -5 + 10*s + e2
U <- cbind(u1,u2)
y <- as.factor(argmax(U))
mydata <- data.frame(s,y)
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Probit

head(mydata,5)

## s y
## 1 0.1680415 1
## 2 0.8075164 2
## 3 0.3849424 1
## 4 0.3277343 1
## 5 0.6021007 2

prop.table(table(y))

## y
## 1 2
## 0.586 0.414
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Probit

1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

s
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Probit

require(AER)
probitfit <- glm(y ~ s, family=binomial(link="probit"))
coeftest(probitfit)

##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.40721 0.36303 -14.895 < 2.2e-16 ***
## s 9.07978 0.59449 15.273 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Probit

Simulation 2:

UiA = 5− 10si + eiA (29)
UiB = −5 + 10si + eiB

ei =
[

eiA
eiB

]
∼ N

([
1
−1

]
,

[
1 1
1 4

])

, where we let ρ (eiA, eiB) = 0.5, so that σAB = ρσAσB = 1.
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Probit

Normalizing (29) ⇒

UiA = 0

UiB = − 12√
3

+ 20√
3
si + εiB

= −6.93 + 11.55si + εiB

, where εiB = (eiB − eiA)/
√
3 ∼ N (0, 1).
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Probit

n <- 1e3
s <- runif(n)

# generating e
require(MASS)
mu <- c(1,-1) # mean
sig <- c(1,2) # s.t.d. of each dimension
rho <- .5 # correlation
Sigma <- matrix(c(sig[1]^2,rho*sig[1]*sig[2], # covariance matrix

rho*sig[1]*sig[2],sig[2]^2),2,2)
e <- mvrnorm(n,mu,Sigma)

# generating y
e1 <- e[,1]
e2 <- e[,2]
u1 <- 5 - 10*s + e1
u2 <- -5 + 10*s + e2
y <- as.factor(argmax(cbind(u1,u2)))
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Probit

head(e,4)

## [,1] [,2]
## [1,] -0.5750613 -5.1608065
## [2,] 0.1128529 -3.4697423
## [3,] 1.9516721 -1.1075891
## [4,] 0.6012319 -0.4711042

colMeans(e)

## [1] 0.9808862 -1.0736455

var(e)

## [,1] [,2]
## [1,] 1.0208563 0.9980833
## [2,] 0.9980833 3.7899603
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Probit

probitfit <- glm(y ~ s, family=binomial(link="probit"))
coeftest(probitfit)

##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -7.22787 0.56184 -12.865 < 2.2e-16 ***
## s 11.96904 0.91906 13.023 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Probit

Simulation 3:

UiA = 5− 10si − 0.1ziA + eiA (30)
UiB = −5 + 10si − 0.1ziB + eiB

ei =
[

eiA
eiB

]
∼ N

([
1
−1

]
,

[
1 0
0 4

])

Normalizing (30) ⇒

UiA = 0

UiB = − 12√
5

+ 20√
5
si −

0.1√
5

(ziB − ziA) + εiB

= −5.37 + 8.94si − 0.045 (ziB − ziA) + εiB

, where εiB = (eiB − eiA)/
√
5 ∼ N (0, 1).
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Probit

n <- 1e3
s <- runif(n)
z1 <- 100*runif(n)
z2 <- 50*runif(n)
e1 <- rnorm(n,mean=1,sd=1)
e2 <- rnorm(n,mean=-1,sd=2)
u1 <- 5 - 10*s -0.1*z1 + e1
u2 <- -5 + 10*s -0.1*z2 + e2
y <- as.factor(argmax(cbind(u1,u2)))
mydata <- data.frame(s,z1,z2,y)
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Probit

probitfit <- glm(y ~ s + z1 + z2, family=binomial(link="probit"))
coeftest(probitfit)

##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.571587 0.431299 -12.9182 < 2.2e-16 ***
## s 9.401062 0.621498 15.1265 < 2.2e-16 ***
## z1 0.044736 0.003975 11.2544 < 2.2e-16 ***
## z2 -0.046307 0.005858 -7.9049 2.682e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Probit

Can we estimate the model with a generic coefficient for zij that does not
change with j? Yes!

dz <- z2 - z1
probitfit <- glm(y ~ s + dz, family=binomial(link="probit"))
coeftest(probitfit)

##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.623073 0.388506 -14.474 < 2.2e-16 ***
## s 9.407041 0.621340 15.140 < 2.2e-16 ***
## dz -0.045071 0.003779 -11.927 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Multinomial Probit

Now consider J = 3.

Uij = x ′ijβj + eij

, and

ei =

 ei1
ei2
ei3

 ∼ N
0,

 σ2
1 σ12 σ13
. σ2

2 σ23
. . σ2

3
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Multinomial Probit

Normalizing level ⇒

Ui1 = 0
Ui2 =

(
x ′i2β2 − x ′i1β1

)
+ ∆ei2

Ui3 =
(
x ′i3β3 − x ′i1β1

)
+ ∆ei3

, where ∆eij = eij − ei1, and31

[
∆ei2
∆ei3

]
∼ N

(
0,
[
σ2

1 + σ2
2 − 2σ12 σ2

1 + σ23 − σ12 − σ13
. σ2

1 + σ2
3 − 2σ13

])

31

Cov (∆ei2,∆ei3) = Cov (ei2 − ei1, ei3 − ei1)
= σ23 − σ21 − σ13 + σ2

1
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Multinomial Probit

Normalizing scale ⇒

Ui1 = 0

Ui2 =
(
x ′i2β̃2 − x ′i1β̃1

)
+ ∆ẽi2

Ui3 =
(
x ′i3β̃3 − x ′i1β̃1

)
+ ∆ẽi3

, where β̃j = λβj , ∆ẽij = λ∆eij , λ = 1
/√

σ2
1 + σ2

2 − 2σ12 , and

[
∆ẽi2
∆ẽi3

]
∼ N

0,
 1 σ2

1+σ23−σ12−σ13
σ2

1+σ2
2−2σ12

.
σ2

1+σ2
3−2σ13

σ2
1+σ2

2−2σ12
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Multinomial Probit

Thus, before normalization, the covariance matrix of the error term has 6
parameters:

Σ =

 σ2
1 σ12 σ13
. σ2

2 σ23
. . σ2

3


After normalization,

Σ̃ =
[
1 ω12
. ω22

]

, where ω12 = σ2
1+σ23−σ12−σ13
σ2

1+σ2
2−2σ12

, ω22 = σ2
1+σ2

3−2σ13
σ2

1+σ2
2−2σ12

.

The number of covariance parameters to estimate decreases from 6 to 2
after normalization.
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Multinomial Probit

In general, a model with J alternatives has at most 1
2J (J − 1)− 1

covariance parameters after normalization.
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Ketchup

Brands: {Heinz, Hunt’s, Del Monte, Store Brand}

Variables: the price of each brand, the income of the buyer (in $1000), the
brand purchased

ketchup <- read.csv("Ketchup.csv")
head(ketchup,3)

## choice price.heinz price.hunts price.delmonte price.stb income
## 1 stb 1.46 1.43 1.45 0.99 44.49198
## 2 heinz 0.99 1.39 1.49 0.89 59.26444
## 3 stb 1.19 1.29 1.46 0.95 31.75753

prop.table(table(ketchup$choice))

##
## delmonte heinz hunts stb
## 0.05375 0.51125 0.21375 0.22125
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Ketchup

Model 1:

Uij = αj + δpriceij + γj incomei + eij (31)
ei ∼ N (0,Σ)
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Ketchup

require(mlogit)
ketchup.long <- mlogit.data(ketchup, shape="wide",

varying=2:5, choice="choice")
head(ketchup.long,12)

## ~~~~~~~
## first 12 observations out of 3200
## ~~~~~~~
## choice income alt price chid idx
## 1 FALSE 44.49198 delmonte 1.45 1 1:onte
## 2 FALSE 44.49198 heinz 1.46 1 1:einz
## 3 FALSE 44.49198 hunts 1.43 1 1:unts
## 4 TRUE 44.49198 stb 0.99 1 1:stb
## 5 FALSE 59.26444 delmonte 1.49 2 2:onte
## 6 TRUE 59.26444 heinz 0.99 2 2:einz
## 7 FALSE 59.26444 hunts 1.39 2 2:unts
## 8 FALSE 59.26444 stb 0.89 2 2:stb
## 9 FALSE 31.75753 delmonte 1.46 3 3:onte
## 10 FALSE 31.75753 heinz 1.19 3 3:einz
## 11 FALSE 31.75753 hunts 1.29 3 3:unts
## 12 TRUE 31.75753 stb 0.95 3 3:stb
##
## ~~~ indexes ~~~~
## chid alt
## 1 1 delmonte
## 2 1 heinz
## 3 1 hunts
## 4 1 stb
## 5 2 delmonte
## 6 2 heinz
## 7 2 hunts
## 8 2 stb
## 9 3 delmonte
## 10 3 heinz
## 11 3 hunts
## 12 3 stb
## indexes: 1, 2
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Ketchup

# mlogit(y ~ z|s|w,...)
# - z: alternative-specific vars with generic coeffs
# - s: individual-specific vars
# - w: alternative-specific vars with alternative-specific coeffs
probitfit1 <- mlogit(choice ~ price|income, ketchup.long,

reflevel="stb", probit=TRUE)

require(AER)
coeftest(probitfit1)[1:7,]

## Estimate Std. Error t value Pr(>|t|)
## delmonte:(intercept) -1.13931111 1.16876911 -0.9747957 3.299608e-01
## heinz:(intercept) -7.05610040 1.81280583 -3.8923641 1.076714e-04
## hunts:(intercept) -4.32246680 1.33056061 -3.2486057 1.208861e-03
## price -3.07882503 0.61797639 -4.9821078 7.733865e-07
## delmonte:income 0.03465121 0.02801584 1.2368435 2.165137e-01
## heinz:income 0.18002372 0.04398663 4.0926917 4.703326e-05
## hunts:income 0.11979359 0.03371002 3.5536490 4.025408e-04
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Ketchup

coeftest(probitfit1)[8:12,]

## Estimate Std. Error t value Pr(>|t|)
## delmonte.heinz -0.1258684 0.4446334 -0.2830836 0.7771870996
## delmonte.hunts -0.7047540 0.4977681 -1.4158280 0.1572209988
## heinz.heinz 1.2623283 0.3342783 3.7762796 0.0001711608
## heinz.hunts 0.6634783 0.3711713 1.7875259 0.0742367344
## hunts.hunts 0.9704545 0.3640111 2.6660021 0.0078331911

So the estimated covariance matrix is ...

probitfit1$omega$stb # covariance matrix using "stb" as reference

## delmonte heinz hunts
## delmonte 1.0000000 -0.1258684 -0.7047540
## heinz -0.1258684 1.6093156 0.9262337
## hunts -0.7047540 0.9262337 1.8786636
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Ketchup

(Ûi ,stb = 0)

Ûi ,delmonte = −1.14− 3.08× pricei ,delmonte + 0.035× incomei + εi ,delmonte

Ûi ,heinz = −7.06− 3.08× pricei ,heinz + 0.18× incomei + εi ,heinz

Ûi ,hunts = −4.32− 3.08× pricei ,hunts + 0.12× incomei + εi ,hunts

, where  εi ,delmonte
εi ,heinz
εi ,hunts

 ∼ N
0,

 1 −0.13 −0.70
. 1.61 0.93
. . 1.88
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Ketchup

Model 2:

Uij = αj + δjpriceij + γj incomei + eij (32)
ei ∼ N (0,Σ)
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Ketchup

probitfit2 <- mlogit(choice ~ 0|income|price, ketchup.long,
reflevel="stb", probit=TRUE)

coeftest(probitfit2)[1:10,]

## Estimate Std. Error t value Pr(>|t|)
## delmonte:(intercept) -2.93786780 2.48851715 -1.180570 2.381313e-01
## heinz:(intercept) -9.79073108 4.40531214 -2.222483 2.653490e-02
## hunts:(intercept) -5.50096028 2.64999192 -2.075840 3.823372e-02
## delmonte:income 0.04822031 0.03350156 1.439345 1.504514e-01
## heinz:income 0.25532406 0.13070045 1.953506 5.111457e-02
## hunts:income 0.16927598 0.08526977 1.985182 4.747189e-02
## stb:price -4.10482188 1.79833571 -2.282567 2.272253e-02
## delmonte:price -2.85282115 0.64411156 -4.429079 1.080621e-05
## heinz:price -4.37328318 2.49407340 -1.753470 7.991161e-02
## hunts:price -4.71107228 2.57769096 -1.827633 6.798415e-02
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Ketchup

coeftest(probitfit2)[11:15,]

## Estimate Std. Error t value Pr(>|t|)
## delmonte.heinz -0.1424442 0.6506784 -0.2189165 0.82677203
## delmonte.hunts -1.0566066 0.8770324 -1.2047520 0.22866213
## heinz.heinz 1.7969567 0.9806295 1.8324522 0.06726274
## heinz.hunts 0.9872264 0.7128141 1.3849704 0.16645499
## hunts.hunts 1.4535726 0.9021936 1.6111537 0.10754821

probitfit2$omega$stb

## delmonte heinz hunts
## delmonte 1.0000000 -0.1424442 -1.056607
## heinz -0.1424442 3.2493438 1.924511
## hunts -1.0566066 1.9245106 4.203907
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Ketchup

Ûi ,stb = −4.1× pricei ,stb

Ûi ,delmonte = −2.94− 2.85× pricei ,delmonte + 0.048× incomei + εi ,delmonte

Ûi ,heinz = −9.79− 4.37× pricei ,heinz + 0.255× incomei + εi ,heinz

Ûi ,hunts = −5.50− 4.71× pricei ,hunts + 0.169× incomei + εi ,hunts

, where  εi ,delmonte
εi ,heinz
εi ,hunts

 ∼ N
0,

 1 −0.14 −1.06
. 3.25 1.92
. . 4.20
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Logistic Regression as RUM

Now let’s assume the following model:

Uij = x ′ijβj + eij (33)

, and
eij ∼i .i .d . Gumbel (0, σ)

© Jiaming Mao



Extreme Value Distribution

The Gumbel distribution, also called the Type I extreme value
distribution, has the following CDF:

F (e;µ, σ) = exp
{
− exp

(
−e − µ

σ

)}
µ is the location parameter.
σ is the scale parameter

For e ∼ Gumbel (µ, σ),

E (e) = µ+ σγe

V (e) = π2

6 σ
2

, where γe ≈ 0.577 is the Euler constant.
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Extreme Value Distribution

The difference between two extreme value random variables is
distributed as a logistic distribution. Let e1, e2 ∼ Gumbel (0, 1) and
let ∆e = e2 − e1. Then the CDF of ∆e is32:

F (∆e) = exp (∆e)
1 + exp (∆e)

In practice, assuming eij ∼i .i .d . Gumbel is nearly the same as
assuming eij ∼i .i .d . Normal.

I The extreme value distribution has fatter tails than the normal, but the
difference is small empirically.

32i.e., the CDF of the logistic distribution is the sigmoid function. See page 11.
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Extreme Value Distribution
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Logistic Regression as RUM

We can always normalize the scale of (33) so that σ = 1:

Uij = x ′ijβj + eij

, where
eij ∼i .i .d . Gumbel (0, 1)
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Logistic Regression as RUM

Let xi = {xij}Jj=1 and Vij = x ′ijβj . We have:

Pr (yi = j | xi ) = Pr (Vij + eij > Vi` + ei` ∀` 6= j | xi )
= Pr (ei` < Vij − Vi` + eij ∀` 6= j | xi )

=
∫ ∏

6̀=j
e−e−(Vij−Vi`+eij)

 e−eij e−e−eij deij

= exp (Vij)∑J
`=1 exp (Vi`)

Under the assumption of eij ∼i .i .d . Gumbel (0, 1), the RUM framework
gives rise to the logistic model.
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Logistic Regression as RUM

Under the RUM framework, individual utility is given by

Ui = max
j
{Uij}

Let U i
.= E [Ui | xi ] be the expected utility of individual i conditional on xi .

Then under the assumption of eij ∼i .i .d . Gumbel (0, 1), we have the
following closed-form expression for U i

33:

U i = E
[

max
j
{Uij}

∣∣∣∣ xi

]

= log

 J∑
j=1

exp (Vij)


33Technically, U i = log

[∑J
j=1 exp (Vij )

]
+ C , where C is any constant. This is

because we can add any C to (Ui1, . . . ,UiJ ) and the model would be the same.
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Logistic vs. Probit

For binary problems, the probit model, after normalization, is

UiA = x ′iAβA

UiB = x ′iBβB + eiB

, where eiB ∼ N (0, 1). Therefore, the probit and the logistic model

are basically the same for binary problems.

For multinomial problems, the two types of models are different as
probit allows ei to have an arbitrary covariance structure34.

34In the econometrics literature, logistic and probit models with alternative-specific
regressors are called conditional logit and conditional probit models, so as to be
distinguished from logistic and probit models with only individual-specific regressors.
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Logistic vs. Probit

35

35For binary problems, if there are only individual-specific variables, then the probit
model, after normalization, is

UiA = 0 (34)
UiB = x ′i β + eiB

, where β is the scaled difference between βB and βA. (34) ⇒

Pr (yi = B) = Φ
(
x ′i β
)

(35)

Compare (35) with the logistic model, one can see that since Φ (.) and σ (.) are close,
the probit and the logistic model are basically the same – they yield very similar
conditional choice probability estimates – for binary problems.
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Logistic vs. Probit
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Income and Voting

probitfit <- glm(vote ~ income, family=binomial(link="probit"))
coeftest(probitfit)

##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.75277 0.41935 -6.5644 5.225e-11 ***
## income 7.93916 1.07686 7.3725 1.675e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Income and Voting

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0
1.

5

income

vo
te

logistic
probit

© Jiaming Mao



Marginal Effects

Uij = αj + γjsi + δzij + eij , eij ∼i .i .d . Gumbel (0, 1) (36)

⇒36

∂ Pr (yi = j | xi )
∂si

=
∂
[
eVij

/∑
` eVi`

]
∂si

= Pr (yi = j | xi )
(
γj −

∑
`

γ` Pr (yi = `| xi )
)

∂ Pr (yi = j | xi )
∂zij

= δ Pr (yi = j | xi ) (1− Pr (yi = j | xi ))

36If δ is alternative-specific, i.e. δj , then
∂ Pr ( yi = j| xi )/ ∂zij = δj Pr ( yi = j| xi ) (1− Pr ( yi = j| xi )).
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Marginal Effects

For alternative-specific variables, the sign of the coefficient is the sign
of the marginal effect: γ > 0 ⇐⇒ ∂ Pr (yi = j | xi )/ ∂zij > 0.

For individual-specific variables, the sign of the coefficient is not
necessarily the sign of the marginal effect: γj > 0 does not imply
∂ Pr (yi = j | xi )/ ∂si > 0.
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Choice Probability Elasticity

Let E jj
i be the own-elasticity of the change in Pr (yi = j | xi ) given a

change in zij . (36) ⇒

E jj
i = ∂ Pr (yi = j | xi )

∂zij

zij
Pr (yi = j | xi )

(37)

= δzij [1− Pr (yi = j | xi )]

Similarly, we can calculate the cross-elasticity of Pr (yi = j | xi ) given a
change in zik , k 6= j :

E jk
i = ∂ Pr (yi = j | xi )

∂zik

zik
Pr (yi = j | xi )

(38)

= −δzik Pr (yi = k| xi )
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Choice Probability Elasticity

Note that (38) does not depend on j – a percentage change in zik
results in the same percentage change in all Pr (yi = j | xi ) , j 6= k.

For example, consider the car market. Suppose the choice set is
{Honda, Toyota, Tesla}. Let zij = pij be the price of each car to each
consumer. Then (38) says that, for each consumer, a 1% decrease in
the price of Honda will result in the same percentage decrease in the
probability of buying Toyota and the probability of buying Tesla.

This property, which is called proportional substitution, is a
manifestation of the IIA property of the logistic model.
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Independence of Irrelevant Alternatives (IIA)

The IIA property is the result of assuming that errors are independent
of each other.

I Hence IIA holds not only for logistic models with i .i .d . extreme value
distributed errors, but holds in general for discrete choice models with
independently distributed errors.

Multinomial probit models, by allowing for correlated errors, do not
have the IIA property.
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Independence of Irrelevant Alternatives (IIA)

Note that the IIA property should be a desirable property for
well-specified models.

Under independence, the error for one alternative provides no
information about the error for another alternative. This should be
the property of a well-specified model such that the unobserved
portion of utility is essentially “white noise.”

When a model omits important unobserved variables that explain
individual choice patterns, however, the errors can become correlated
over alternatives.

In this sense, the ultimate goal of the researcher is to represent utility
so well that the assumption of error independence is appropriate.

In the absence of that, a discrete choice model that allows for
correlated errors, such as the multinomial probit, can be used.
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Employment

Sector of employment: Manufacturing, Retail, Education, Health,
Personal Service, Professional Service

Individual variables: sex, education (years of schooling), wage

emp <- read.csv("employment.csv")
emp$sex <- factor(emp$sex,labels=c("male","female"))
head(emp,4)

## sex education wage sector
## 1 female 15 32241.35 personal
## 2 female 16 70051.50 education
## 3 male 13 35248.51 manufacturing
## 4 female 12 15535.13 health
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Employment

require(descr)
freq(emp$sector,plot=FALSE)

## emp$sector
## Frequency Percent
## education 277 13.85
## health 365 18.25
## manufacturing 426 21.30
## personal 268 13.40
## professional 406 20.30
## retail 258 12.90
## Total 2000 100.00

aggregate(wage~sector,emp,mean)

## sector wage
## 1 education 57134.48
## 2 health 50039.96
## 3 manufacturing 43630.54
## 4 personal 36799.96
## 5 professional 85319.71
## 6 retail 25460.33
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Employment
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Employment
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Employment

Model:

Uij = αj + βwij + eij (39)
eij ∼ Gumbel (0, 1)

Let yi be the observed sector of employment of individual i . To estimate
the model, we need to construct counterfactual wages wij for each
individual i and sector j 6= yi .

© Jiaming Mao



Employment

We can predict counterfactual wages by running the following regressions
for each sector j :

logwij = ω0j + ω1jEducationi + ω2jFemalei (40)
+ ω3jEducationi × Femalei + ξij

, where Femalei is an indicator variable.

(40) ⇒ ŵij . We then estimate:

Uij = αj + βŵij + eij

eij ∼ Gumbel (0, 1)

© Jiaming Mao



Employment

Constructed data set with counterfactual wages:

head(emp,4)

## sector wage.education wage.health wage.manufacturing wage.personal
## 1 personal 36373.753 45757.89 37138.46 45022.19
## 2 education 60971.110 69129.87 50215.49 50944.08
## 3 manufacturing 15656.873 21219.96 33982.85 37336.32
## 4 health 7722.895 13269.87 15023.89 31076.01
## wage.professional wage.retail
## 1 54747.97 32333.67
## 2 83152.41 40173.16
## 3 33341.71 24485.34
## 4 15625.99 16858.23
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Employment

# Estimating the discrete choice model
require(AER)
emp.long <- mlogit.data(emp,shape="wide",varying=2:7,choice="sector")
modelfit <- mlogit(sector ~ wage, emp.long)
coeftest(modelfit)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept):health 8.7959e-02 8.1429e-02 1.0802 0.28019
## (Intercept):manufacturing 1.7359e-01 8.2219e-02 2.1113 0.03487 *
## (Intercept):personal -3.8266e-01 9.5724e-02 -3.9975 6.634e-05 ***
## (Intercept):professional -3.9360e-01 9.7211e-02 -4.0489 5.342e-05 ***
## (Intercept):retail 5.5781e-02 8.8256e-02 0.6320 0.52743
## wage 3.7627e-05 2.6104e-06 14.4142 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

© Jiaming Mao



Welfare Analysis

The expected utility of individual i is:

U i = log

∑
j

exp (αj + βwij)

 (41)

Let U$
i denote the utility of the individual in monetary terms. Since in

model (39), each dollar in wage adds β to utility, each unit of utility is
equivalent to 1/β dollars. The expected utility of individual i in monetary
terms is thus37:

U$
i = 1

β
log

∑
j

exp (αj + βwij)

 (42)

37More precisely, we can add any constant C to (41) and (42).
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Welfare Analysis

# Calculating expected utilities
J <- 6 # number of sectors
N <- nrow(emp) # number of individuals
b <- coef(modelfit)["wage"]
X <- model.matrix(modelfit)
V <- X %*% coef(modelfit)
V <- matrix(V,N,J,byrow=TRUE)
U <- log(rowSums(exp(V)))/b
summary(U)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 52366 68246 84799 94882 101307 564822
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Counterfactual Experiment:
20% decrease in Manufacturing wages

Suppose trade liberalization causes a 20% decrease in the wages of
manufacturing workers.

How does the employment pattern change after trade liberalization?

What are its welfare consequences?
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Counterfactual Experiment:
20% decrease in Manufacturing wages

emp2 <- emp
emp2$wage.manufacturing <- emp$wage.manufacturing*0.8
emp2.long <- mlogit.data(emp2,shape="wide",varying=2:7,choice="sector")
colMeans(predict(modelfit,emp2.long))

## education health manufacturing personal professional
## 0.1464848 0.1937193 0.1657904 0.1406273 0.2176602
## retail
## 0.1357180
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Counterfactual Experiment:
20% decrease in Manufacturing wages

Employment Share Before and After Trade Liberalization

Employment Share Before After

Manufacturing 21.35 16.63

Retail 12.75 13.41

Education 14.10 14.91

Health 18.40 19.52

Personal Service 12.85 13.49

Professional Service 20.55 22.05
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Counterfactual Experiment:
20% decrease in Manufacturing wages

# Calculating expected utilities
X2 <- X
X2[index(emp.long)$alt=="manufacturing","wage"] <-

X2[index(emp.long)$alt=="manufacturing","wage"]*.8
V2 <- X2 %*% coef(modelfit)
V2 <- matrix(V2,N,J,byrow=TRUE)
U2 <- log(rowSums(exp(V2)))/b
summary(U2)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 52192 67498 82421 93295 97975 564818
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Counterfactual Experiment:
20% decrease in Manufacturing wages

# Change in expected utilities
dU <- U2 - U
summary(dU)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -4026.199 -2377.896 -1161.950 -1587.433 -755.802 -0.146

emp <- data.frame(emp0,U,U2,dU)

# by gender
aggregate(dU ~ sex,emp,mean)

## sex dU
## 1 male -2342.3223
## 2 female -841.5479
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Counterfactual Experiment:
20% decrease in Manufacturing wages

# by education
aggregate(dU ~ education,emp,mean)

## education dU
## 1 8 -199.81766
## 2 9 -268.37735
## 3 10 -424.76973
## 4 11 -587.90009
## 5 12 -818.89454
## 6 13 -1228.86410
## 7 14 -1643.87818
## 8 15 -2208.52149
## 9 16 -2637.40772
## 10 17 -2069.31717
## 11 18 -939.75103
## 12 19 -143.24862
## 13 20 -2.87952
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Ketchup

Let’s take model (31) and compare logistic vs. probit counterfactual
predictions:

logitfit <- mlogit(choice ~ price|income, ketchup.long, reflevel="stb")
coeftest(logitfit)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept):delmonte -3.831626 1.169149 -3.2773 0.001094 **
## (Intercept):heinz -10.888985 0.946463 -11.5049 < 2.2e-16 ***
## (Intercept):hunts -6.305256 0.871547 -7.2346 1.103e-12 ***
## price -4.418198 0.329590 -13.4051 < 2.2e-16 ***
## income:delmonte 0.107143 0.025841 4.1462 3.745e-05 ***
## income:heinz 0.276613 0.020943 13.2078 < 2.2e-16 ***
## income:hunts 0.180305 0.019794 9.1091 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Counterfactual Experiment: 20% price increase for Heinz

newdata <- ketchup.long
idx <- index(newdata)$alt == "heinz"
newdata[idx,"price"] <- newdata[idx,"price"]*1.2 # 20% price increase

# logistic prediction
logit.phat.new <- predict(logitfit,newdata)
logit.share.new <- colMeans(logit.phat.new)
logit.share.new

## stb delmonte heinz hunts
## 0.25132916 0.06914047 0.37982532 0.29970505

# probit prediction
probit.phat.new <- predict(probitfit1,newdata)
probit.share.new <- colMeans(probit.phat.new)
probit.share.new

## stb delmonte heinz hunts
## 0.22741067 0.07871089 0.37283446 0.32164539
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Counterfactual Experiment: 20% price increase for Heinz

market share Heinz Hunts Del Monte Store Brand

51.13% 21.38% 5.38% 22.13%

After Heinz price increase:

logistic 37.98% 29.97% 6.91% 25.13%

probit 37.28% 32.16% 7.87% 22.74%
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Mode of Transportation

## Probit Regression
transport.long <- mlogit.data(transport, shape="wide", choice="y")
probitfit <- mlogit(y ~ 0|loginc+distance, transport.long, probit=TRUE)

coeftest(probitfit)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## car:(intercept) -8.925928 1.389554 -6.4236 2.062e-10 ***
## subway:(intercept) -1.454769 1.609180 -0.9040 0.3662
## car:loginc 0.773128 0.128574 6.0131 2.555e-09 ***
## subway:loginc 0.118611 0.133202 0.8905 0.3734
## car:distance 0.557613 0.532888 1.0464 0.2956
## subway:distance 0.698667 0.772920 0.9039 0.3663
## car.subway -0.013351 0.153096 -0.0872 0.9305
## subway.subway 0.315844 0.364598 0.8663 0.3865
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1© Jiaming Mao



Mode of Transportation

probitfit$omega

## $bus
## car subway
## car 1.00000000 -0.01335131
## subway -0.01335131 0.09993555
##
## $car
## bus subway
## bus 1.000000 1.013351
## subway 1.013351 1.126638
##
## $subway
## bus car
## bus 0.09993555 0.1132869
## car 0.11328686 1.1266382
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Counterfactual Experiment: No Subway

# To predict choice probabilities without one alternative,
# one trick is to make the xij associated with that alternative
# extremely large or small so that its predicted prob is always 0
newdata <- transport.long
idx <- index(newdata)$alt == "subway"
newdata[idx,"loginc"] <- -1e10
newdata[idx,"distance"] <- -1e10
probit.phat.new <- predict(probitfit,newdata)
probit.share.new <- colMeans(probit.phat.new)

probit.share.new

## bus car subway
## 0.6047072 0.3952928 0.0000000
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Counterfactual Experiment: No Subway

Observed Market Share

bus car subway

22% 31% 47%

Predicted Market Share without Subway

bus car

logistic 38% 62%

probit 60% 40%
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